Young’s Modulus, denoted by E, quantifies a solid material’s stiffness. It is the ratio of tensile stress ([latex]\sigma[/latex]) to extensional strain ([latex]\epsilon[/latex]) in the elastic (linear) region of the stress-strain curve. This relationship is defined by Hooke’s Law: [latex]E = \frac{\sigma}{\epsilon}[/latex]. A higher modulus indicates a stiffer material, meaning more stress is required for a given amount of elastic deformation.
Young’s Modulus (Modulus of Elasticity)
- Thomas Young
Young’s Modulus is a fundamental property intrinsic to a material, assuming it is isotropic and linear elastic. It is determined from the slope of the initial, straight-line portion of a stress-strain curve obtained during tensile testing. This region is known as the elastic region, where the material will return to its original shape if the load is removed. The formula [latex]E = \frac{\sigma}{\epsilon} = \frac{F/A_0}{\Delta L/L_0}[/latex] relates stress (force F per initial cross-sectional area A₀) to strain (change in length ΔL over original length L₀). The concept originates from Hooke’s Law, which states that for relatively small deformations, the force required to stretch or compress a spring is directly proportional to the distance of that extension or compression. Thomas Young elaborated on this concept in the early 19th century, applying it to the intrinsic properties of materials rather than just the behavior of an object like a spring. This was a crucial step in moving from empirical observations to a quantitative science of materials. The modulus is temperature and pressure dependent, but for many engineering applications at standard conditions, it is treated as a constant. It is a critical parameter for predicting how a component will deform under load, essential for designing safe and reliable structures, from bridges to microchips.
Type
Perturbation
Utilisation
Précurseurs
- Robert Hooke’s law of elasticity (1678)
- Leonhard Euler’s work on the buckling of columns (1757)
- development of the concept of stress and strain
Applications
- structural engineering for calculating beam deflection
- élément fini analysis (FEA) simulations
- design of springs and fasteners
- aerospace engineering for material selection
- biomechanics for modeling bone and tissue
Brevets :
Innovations potentielles Idées
!niveaux !!! Adhésion obligatoire
Vous devez être membre de l'association pour accéder à ce contenu.
DISPONIBLE POUR DE NOUVEAUX DÉFIS
Ingénieur mécanique, chef de projet, ingénierie des procédés ou R&D
Disponible pour un nouveau défi dans un court délai.
Contactez-moi sur LinkedIn
Intégration électronique métal-plastique, Conception à coût réduit, BPF, Ergonomie, Appareils et consommables de volume moyen à élevé, Production allégée, Secteurs réglementés, CE et FDA, CAO, Solidworks, Lean Sigma Black Belt, ISO 13485 médical
Nous recherchons un nouveau sponsor
Votre entreprise ou institution est dans le domaine de la technique, de la science ou de la recherche ?
> envoyez-nous un message <
Recevez tous les nouveaux articles
Gratuit, pas de spam, email non distribué ni revendu
ou vous pouvez obtenir votre adhésion complète - gratuitement - pour accéder à tout le contenu restreint >ici<
Invention, innovation et principes techniques connexes