Maison » Cohomologie des gerbes

Cohomologie des gerbes

1950
  • Jean Leray
  • Henri Cartan
  • Jean-Pierre Serre
  • Alexander Grothendieck
Espace de travail d'un mathématicien axé sur la cohomologie des gerbes avec des manuels et des notes.

(generate image for illustration only)

La cohomologie des gerbes est un outil central de la géométrie algébrique moderne pour l'étude des propriétés globales des espaces géométriques. Pour un sheaf [latex]\mathcal{F}[/latex] sur un espace [latex]X[/latex], les groupes de cohomologie [latex]H^i(X, \mathcal{F})[/latex] sont des espaces vectoriels dont les dimensions fournissent des invariants importants. Le groupe [latex]H^0[/latex] représente les sections globales, tandis que les groupes supérieurs [latex]H^i[/latex] pour [latex]i > 0[/latex] mesurent les obstacles à l'assemblage de sections locales en une section globale.

The intuition behind sheaf cohomology is to measure the failure of a certain ‘local-to-global’ principle. A sheaf is a tool that assigns data (like functions or vector spaces) to open sets of a espace topologique in a consistent way. The global sections functor, which takes a sheaf [latex]\mathcal{F}[/latex] and returns its group of global sections [latex]\Gamma(X, \mathcal{F})[/latex], is left exact but not always right exact. Sheaf cohomology groups are defined as the right derived functors of the global sections functor. This abstract definition from homological algebra provides a robust computational and theoretical framework.

In practice, [latex]H^1(X, \mathcal{F})[/latex] often classifies certain geometric objects. For example, if [latex]\mathcal{O}^*[/latex] is the sheaf of non-vanishing regular functions, [latex]H^1(X, \mathcal{O}^*)[/latex] classifies line bundles on the scheme [latex]X[/latex]. The vanishing of cohomology groups has strong geometric consequences; for instance, Kodaira’s vanishing theorem states that for ample line bundles on a projective variety in characteristic zero, certain cohomology groups are zero, which has profound implications for the geometry of the variety. Serre’s FAC paper and Grothendieck’s Tohoku paper established sheaf cohomology as the correct language for algebraic geometry, replacing older, more ad-hoc methods.

UNESCO Nomenclature: 1105
- Géométrie

Taper

Système abstrait

Perturbation

Révolutionnaire

Usage

Utilisation généralisée

Précurseurs

  • sheaf theory (Jean Leray)
  • homological algebra (Cartan, Eilenberg)
  • de rham cohomology in differential geometry
  • algebraic topology (simplicial and singular homology)
  • čech cohomology

Applications

  • generalization of the Riemann-Roch theorem (hirzebruch-riemann-roch)
  • string theory and theoretical physics (calculating states and anomalies)
  • proof of the weil conjectures (deligne)
  • classification of vector bundles and other geometric objects
  • deformation theory (studying how geometric objects can be varied)

Brevets:

NA

Idées d'innovations potentielles

!niveaux !!! Adhésion obligatoire

Vous devez être membre de l'association pour accéder à ce contenu.

S’inscrire maintenant

Vous êtes déjà membre ? Connectez-vous ici
Related to: sheaf cohomology, sheaf, derived functor, global sections, obstruction, Čech cohomology, Serre, Grothendieck.

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

DISPONIBLE POUR DE NOUVEAUX DÉFIS
Ingénieur mécanique, chef de projet, ingénierie des procédés ou R&D
Développement de produits efficace

Disponible pour un nouveau défi dans un court délai.
Contactez-moi sur LinkedIn
Intégration électronique métal-plastique, Conception à coût réduit, BPF, Ergonomie, Appareils et consommables de volume moyen à élevé, Production allégée, Secteurs réglementés, CE et FDA, CAO, Solidworks, Lean Sigma Black Belt, ISO 13485 médical

Nous recherchons un nouveau sponsor

 

Votre entreprise ou institution est dans le domaine de la technique, de la science ou de la recherche ?
> envoyez-nous un message <

Recevez tous les nouveaux articles
Gratuit, pas de spam, email non distribué ni revendu

ou vous pouvez obtenir votre adhésion complète - gratuitement - pour accéder à tout le contenu restreint >ici<

Contexte historique

(si la date est inconnue ou non pertinente, par exemple « mécanique des fluides », une estimation arrondie de son émergence notable est fournie)

Inventions, innovations et principes techniques connexes

Retour en haut

Vous aimerez peut-être aussi