For materials that do not have a distinct yield point on their stress-strain curve, like aluminum or high-strength steel, ‘proof stress’ is the engineering equivalent. It is defined as the stress required to produce a small, specified amount of permanent (plastic) deformation, typically 0.2% of the original gauge length. This value, [latex]\sigma_{0.2}[/latex], is used in design calculations as the material’s practical elastic limit.
Proof Stress

Many engineering materials, particularly ductile metals like aluminum alloys, copper alloys, and certain types of steel, do not exhibit the clear, sudden yielding behavior seen in mild steel. Their stress-strain curve transitions from elastic to plastic behavior gradually. For design and safety purposes, engineers need a consistent point to define the onset of permanent deformation. This is where proof stress, also known as offset yield strength, becomes crucial. To determine it, a tensile test is performed while plotting stress versus strain. A line is drawn on this graph parallel to the initial linear (elastic) portion of the curve, but offset from the origin by a specified strain value, most commonly 0.2% (or 0.002 strain). The stress at which this offset line intersects the stress-strain curve is defined as the 0.2% proof stress ([latex]\sigma_{0.2}[/latex]).
This value is a practical and reproducible measure of the material’s elastic limit. It signifies that if the material is loaded to this stress level and then unloaded, it will have undergone a permanent deformation of 0.2%. While some plastic deformation has occurred, it is considered small enough to be acceptable for many structural applications. This convention allows engineers to design components using materials without a sharp yield point with the same safety and reliability principles as those with one, ensuring that structures do not permanently deform under their design loads.
Type
Perturbation
Utilisation
Précurseurs
- hooke’s law of elasticity
- development of the tensile testing machine
- the concept of stress and strain
- the need to characterize the mechanical properties of new alloys developed in the late 19th and early 20th centuries
Applications
- material specification for aerospace alloys
- design of automotive components
- structural engineering calculations for buildings and bridges
- quality control in metal production
- élément fini analysis (fea) material models
Brevets :
Innovations potentielles Idées
!niveaux !!! Adhésion obligatoire
Vous devez être membre de l'association pour accéder à ce contenu.
DISPONIBLE POUR DE NOUVEAUX DÉFIS
Ingénieur mécanique, chef de projet, ingénierie des procédés ou R&D
Disponible pour un nouveau défi dans un court délai.
Contactez-moi sur LinkedIn
Intégration électronique métal-plastique, Conception à coût réduit, BPF, Ergonomie, Appareils et consommables de volume moyen à élevé, Production allégée, Secteurs réglementés, CE et FDA, CAO, Solidworks, Lean Sigma Black Belt, ISO 13485 médical
Nous recherchons un nouveau sponsor
Votre entreprise ou institution est dans le domaine de la technique, de la science ou de la recherche ?
> envoyez-nous un message <
Recevez tous les nouveaux articles
Gratuit, pas de spam, email non distribué ni revendu
ou vous pouvez obtenir votre adhésion complète - gratuitement - pour accéder à tout le contenu restreint >ici<
Invention, innovation et principes techniques connexes