Maison » Physics of Failure (PoF)

Physics of Failure (PoF)

1980

Physics of Failure (PoF) is a reliability engineering approach that uses knowledge of materials science and physics to understand and model the root-cause mechanisms of failure. Instead of relying purely on statistical data from past failures, it focuses on predicting failure by analyzing the physical processes (e.g., fatigue, corrosion, creep) that lead to degradation and breakdown.

The Physics of Failure approach represents a shift from the empirical, statistical methods (like relying on MTBF from handbooks) to a more science-based, deterministic methodology. The core idea is to prevent failures at the design stage by understanding how the stresses of manufacturing, shipping, and operation interact with the materials and geometry of a component to initiate and propagate failure mechanisms.

Key activities in a PoF analysis include: identifying potential failure mechanisms and sites, creating a load profile (thermal, mechanical, electrical, chemical stresses), and using mathematical models to predict the time to failure. For example, Coffin-Manson models can be used to predict low-cycle fatigue life under thermal cycling, while Arrhenius models can predict the acceleration of chemical degradation processes with temperature.

This approach is particularly valuable for new technologies or applications where historical failure data is unavailable. By focusing on the fundamental science, engineers can design for reliability, select appropriate materials, and define realistic testing protocols that target specific failure mechanisms, leading to more robust and durable products without the need for extensive trial-and-error testing.

UNESCO Nomenclature: 2210
– Physics

Type

Abstract System

Disruption

Substantial

Utilisation

Niche/Specialized

Precursors

  • materials science and solid-state physics
  • fracture mécanique developed by A. A. Griffith
  • continuum mechanics and stress-strain analysis
  • models for chemical reaction kinetics (e.g., Arrhenius equation)
  • finite element analysis (fea) software

Applications

  • designing reliable microelectronics by modeling electromigration and thermal fatigue in solder joints
  • predicting the lifetime of turbine blades in jet engines based on creep and fatigue models
  • assessing the durability of structures like bridges against corrosion and material degradation
  • developing more accurate accelerated life tests for new materials and technologies

Brevets :

QUE

Potential Innovations Ideas

!niveaux !!! Adhésion obligatoire

Vous devez être membre de l'association pour accéder à ce contenu.

S’inscrire maintenant

Vous êtes déjà membre ? Connectez-vous ici
Related to: physics of failure, pof, root cause analysis, failure mechanism, materials science, reliability physics, degradation, accelerated testing

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

DISPONIBLE POUR DE NOUVEAUX DÉFIS
Ingénieur mécanique, chef de projet ou de R&D
Développement de produits efficace

Disponible pour un nouveau défi dans un court délai.
Contactez-moi sur LinkedIn
Intégration électronique métal-plastique, Conception à coût réduit, BPF, Ergonomie, Appareils et consommables de volume moyen à élevé, Secteurs réglementés, CE et FDA, CAO, Solidworks, Lean Sigma Black Belt, ISO 13485 médical

Nous recherchons un nouveau sponsor

 

Votre entreprise ou institution est dans le domaine de la technique, de la science ou de la recherche ?
> envoyez-nous un message <

Recevez tous les nouveaux articles
Gratuit, pas de spam, email non distribué ni revendu

ou vous pouvez obtenir votre adhésion complète - gratuitement - pour accéder à tout le contenu restreint >ici<

Historical Context

(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)

Related Invention, Innovation & Technical Principles

Retour en haut

Vous aimerez peut-être aussi