Maison » Hamiltonian Mechanics

Hamiltonian Mechanics

1833
  • William Rowan Hamilton

A reformulation of classical mechanics that uses generalized coordinates and their conjugate momenta. It is based on the Hamiltonian function, [latex]H(q, p, t)[/latex], representing the system’s total energy. The dynamics are described by Hamilton’s equations: [latex]\dot{q}_i = \frac{\partial H}{\partial p_i}[/latex] and [latex]\dot{p}_i = -\frac{\partial H}{\partial q_i}[/latex]. This cadre is central to quantum mechanics and statistical mechanics.

Hamiltonian mechanics, developed by William Rowan Hamilton, is a further abstraction of classical mechanics, building upon the Lagrangian framework. Its natural setting is phase space, an abstract space where the axes are the generalized coordinates ([latex]q_i[/latex]) and their corresponding generalized momenta ([latex]p_i = \frac{\partial L}{\partial \dot{q}_i}[/latex]). The complete state of a system at any instant is represented by a single point in this phase space.

The central function is the Hamiltonian, [latex]H(q, p, t)[/latex], which is derived from the Lagrangian via a Legendre transformation. For many common systems, the Hamiltonian is simply the total energy, [latex]H = T + V[/latex]. The system’s evolution in time is governed by a set of first-order differential equations known as Hamilton’s equations: [latex]\dot{q}_i = \frac{\partial H}{\partial p_i}[/latex] and [latex]\dot{p}_i = -\frac{\partial H}{\partial q_i}[/latex]. These equations are symmetric and often easier to work with than the second-order Euler-Lagrange equations.

A profound aspect of this formalism is its deep connection to other areas of physics. The structure of Hamiltonian mechanics is preserved under a class of transformations called canonical transformations. The time evolution of any quantity [latex]f(q, p)[/latex] can be expressed using Poisson brackets, a mathematical operation that has a direct analogue in quantum mechanics: the commutator. This makes Hamiltonian mechanics the most direct classical precursor to quantum theory.

Furthermore, Hamiltonian mechanics is the foundation of statistical mechanics. Liouville’s theorem, a direct consequence of Hamilton’s equations, states that the volume of a region in phase space is conserved as it evolves in time. This principle is crucial for understanding the behavior of large ensembles of particles, such as atoms in a gas.

UNESCO Nomenclature: 2211
– Physics

Type

Abstract System

Disruption

Foundational

Utilisation

Widespread Use

Precursors

  • Lagrangian mechanics
  • Legendre transformation
  • Calculus of variations
  • Newtonian mechanics

Applications

  • quantum mechanics (schrödinger equation formulation)
  • statistical mechanics (phase space and liouville’s theorem)
  • celestial mechanics (perturbation theory)
  • control theory and optimal control
  • geometric optics

Brevets :

QUE

Potential Innovations Ideas

!niveaux !!! Adhésion obligatoire

Vous devez être membre de l'association pour accéder à ce contenu.

S’inscrire maintenant

Vous êtes déjà membre ? Connectez-vous ici
Related to: hamiltonian, phase space, canonical coordinates, conjugate momentum, poisson brackets, quantum mechanics, statistical mechanics, symplectic geometry

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

DISPONIBLE POUR DE NOUVEAUX DÉFIS
Ingénieur mécanique, chef de projet ou de R&D
Développement de produits efficace

Disponible pour un nouveau défi dans un court délai.
Contactez-moi sur LinkedIn
Intégration électronique métal-plastique, Conception à coût réduit, BPF, Ergonomie, Appareils et consommables de volume moyen à élevé, Secteurs réglementés, CE et FDA, CAO, Solidworks, Lean Sigma Black Belt, ISO 13485 médical

Nous recherchons un nouveau sponsor

 

Votre entreprise ou institution est dans le domaine de la technique, de la science ou de la recherche ?
> envoyez-nous un message <

Recevez tous les nouveaux articles
Gratuit, pas de spam, email non distribué ni revendu

ou vous pouvez obtenir votre adhésion complète - gratuitement - pour accéder à tout le contenu restreint >ici<

Related Invention, Innovation & Technical Principles

Retour en haut

Vous aimerez peut-être aussi