Generalized Hooke’s Law is the constitutive equation for linear elastic materials, stating that the stress tensor is linearly proportional to the strain tensor. The relationship is expressed as [latex]\sigma = C : \varepsilon[/latex], where [latex]\sigma[/latex] is the stress tensor, [latex]\varepsilon[/latex] is the strain tensor, and [latex]C[/latex] is the fourth-order stiffness tensor containing the material’s elastic constants.
Generalized Hooke’s Law
- Robert Hooke
- Thomas Young
- Augustin-Louis Cauchy
While Robert Hooke’s original 1678 law (“ut tensio, sic vis” – as the extension, so the force) described a simple one-dimensional linear relationship, the generalized Hooke’s Law extends this principle to three dimensions. It forms the mathematical foundation of the theory of linear elasticity. The relationship connects the six independent components of the stress tensor to the six independent components of the infinitesimal strain tensor. This is achieved through the stiffness tensor [latex]C_{ijkl}[/latex], a fourth-order tensor containing 81 components in its most general form.
Due to the symmetry of the stress and strain tensors, the number of independent components in the stiffness tensor reduces to 36. Furthermore, assuming the existence of a strain energy density function, the stiffness tensor itself becomes symmetric ([latex]C_{ijkl} = C_{klij}[/latex]), reducing the number of independent elastic constants to 21 for the most general anisotropic material. For materials with higher degrees of symmetry, this number is further reduced. For an isotropic material, which has the same properties in all directions, only two independent elastic constants are needed, such as Young’s Modulus (E) and Poisson’s Ratio (ν). In this common case, the law simplifies significantly, allowing for direct calculation of stresses from strains and vice-versa. This law is only valid within the material’s elastic limit; beyond this point, permanent plastic deformation occurs, and other constitutive models are required.
Type
Disruption
Utilisation
Precursors
- Observations on the elastic properties of materials
- Development of the concepts of stress and strain
- Newton’s laws of motion
Applications
- finite element analysis (FEA) logiciel for structural design
- design of springs, beams, and other elastic components
- material characterization through tensile testing
- seismology to model the propagation of elastic waves through the Earth
Brevets :
Potential Innovations Ideas
!niveaux !!! Adhésion obligatoire
Vous devez être membre de l'association pour accéder à ce contenu.
DISPONIBLE POUR DE NOUVEAUX DÉFIS
Ingénieur mécanique, chef de projet ou de R&D
Disponible pour un nouveau défi dans un court délai.
Contactez-moi sur LinkedIn
Intégration électronique métal-plastique, Conception à coût réduit, BPF, Ergonomie, Appareils et consommables de volume moyen à élevé, Secteurs réglementés, CE et FDA, CAO, Solidworks, Lean Sigma Black Belt, ISO 13485 médical
Nous recherchons un nouveau sponsor
Votre entreprise ou institution est dans le domaine de la technique, de la science ou de la recherche ?
> envoyez-nous un message <
Recevez tous les nouveaux articles
Gratuit, pas de spam, email non distribué ni revendu
ou vous pouvez obtenir votre adhésion complète - gratuitement - pour accéder à tout le contenu restreint >ici<
Related Invention, Innovation & Technical Principles