Maison » Fundamental Solution (Green’s Function)

Fundamental Solution (Green’s Function)

1828
  • George Green

A fundamental solution of a linear partial differential operator [latex]L[/latex] is a solution to the equation [latex]Lu = delta(x)[/latex], where [latex]delta(x)[/latex] is the Dirac delta function. It represents the response of the system to a point source or impulse. Once known, the solution to the inhomogeneous equation [latex]Lu = f(x)[/latex] can be found by convolution: [latex]u(x) = (G * f)(x)[/latex], where [latex]G[/latex] is the fundamental solution.

The concept of a fundamental solution, often closely related to a Green’s function, is a powerful tool for solving inhomogeneous linear PDEs. The Dirac delta function [latex]delta(x)[/latex] is a generalized function representing an idealized point source of infinite density and unit total mass, concentrated at [latex]x=0[/latex]. The fundamental solution [latex]G(x)[/latex] is therefore the effect or field generated by this single point source.

The power of this méthode comes from the superposition principle, which applies to linear equations. Any general source term [latex]f(x)[/latex] can be thought of as a sum (or integral) of infinitely many weighted point sources. The total solution [latex]u(x)[/latex] is then the superposition of the responses to each of these point sources. This superposition is mathematically expressed by the convolution integral [latex]u(x) = int G(x-y)f(y) dy[/latex]. This transforms the problem of solving a PDE into the problem of finding the fundamental solution and then performing an integration.

For example, the fundamental solution for the Laplace operator in three dimensions ([latex]L = nabla^2[/latex]) is [latex]G(vec{r}) = -frac{1}{4pi|vec{r}|}[/latex], which is the form of the electrostatic or gravitational potential from a point charge or mass. The fundamental solution for the heat equation is the ‘heat kernel’, a Gaussian function that spreads out over time. Green’s functions are closely related but are tailored to specific domains and boundary conditions, often constructed from the fundamental solution.

UNESCO Nomenclature: 1208
– Mathematical physics

Type

Abstract System

Disruption

Foundational

Utilisation

Widespread Use

Precursors

  • superposition principle for linear equations
  • potential theory of laplace and poisson
  • fourier analysis and convolution theorem
  • dirac’s formulation of the delta function

Applications

  • electromagnetism for calculating fields from charge distributions
  • quantum field theory for calculating propagators
  • structural engineering for determining the response of a structure to a point load
  • acoustics for modeling sound from a point source
  • image processing for deblurring (deconvolution)

Brevets :

QUE

Potential Innovations Ideas

!niveaux !!! Adhésion obligatoire

Vous devez être membre de l'association pour accéder à ce contenu.

S’inscrire maintenant

Vous êtes déjà membre ? Connectez-vous ici
Related to: fundamental solution, green’s function, dirac delta, point source, convolution, linear pde, potential theory, propagator

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

DISPONIBLE POUR DE NOUVEAUX DÉFIS
Ingénieur mécanique, chef de projet ou de R&D
Développement de produits efficace

Disponible pour un nouveau défi dans un court délai.
Contactez-moi sur LinkedIn
Intégration électronique métal-plastique, Conception à coût réduit, BPF, Ergonomie, Appareils et consommables de volume moyen à élevé, Secteurs réglementés, CE et FDA, CAO, Solidworks, Lean Sigma Black Belt, ISO 13485 médical

Nous recherchons un nouveau sponsor

 

Votre entreprise ou institution est dans le domaine de la technique, de la science ou de la recherche ?
> envoyez-nous un message <

Recevez tous les nouveaux articles
Gratuit, pas de spam, email non distribué ni revendu

ou vous pouvez obtenir votre adhésion complète - gratuitement - pour accéder à tout le contenu restreint >ici<

Historical Context

(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)

Related Invention, Innovation & Technical Principles

Retour en haut

Vous aimerez peut-être aussi