A fundamental solution of a linear partial differential operator [latex]L[/latex] is a solution to the equation [latex]Lu = delta(x)[/latex], where [latex]delta(x)[/latex] is the Dirac delta function. It represents the response of the system to a point source or impulse. Once known, the solution to the inhomogeneous equation [latex]Lu = f(x)[/latex] can be found by convolution: [latex]u(x) = (G * f)(x)[/latex], where [latex]G[/latex] is the fundamental solution.
Fundamental Solution (Green’s Function)
- George Green
The concept of a fundamental solution, often closely related to a Green’s function, is a powerful tool for solving inhomogeneous linear PDEs. The Dirac delta function [latex]delta(x)[/latex] is a generalized function representing an idealized point source of infinite density and unit total mass, concentrated at [latex]x=0[/latex]. The fundamental solution [latex]G(x)[/latex] is therefore the effect or field generated by this single point source.
The power of this méthode comes from the superposition principle, which applies to linear equations. Any general source term [latex]f(x)[/latex] can be thought of as a sum (or integral) of infinitely many weighted point sources. The total solution [latex]u(x)[/latex] is then the superposition of the responses to each of these point sources. This superposition is mathematically expressed by the convolution integral [latex]u(x) = int G(x-y)f(y) dy[/latex]. This transforms the problem of solving a PDE into the problem of finding the fundamental solution and then performing an integration.
For example, the fundamental solution for the Laplace operator in three dimensions ([latex]L = nabla^2[/latex]) is [latex]G(vec{r}) = -frac{1}{4pi|vec{r}|}[/latex], which is the form of the electrostatic or gravitational potential from a point charge or mass. The fundamental solution for the heat equation is the ‘heat kernel’, a Gaussian function that spreads out over time. Green’s functions are closely related but are tailored to specific domains and boundary conditions, often constructed from the fundamental solution.
Type
Disruption
Utilisation
Precursors
- superposition principle for linear equations
- potential theory of laplace and poisson
- fourier analysis and convolution theorem
- dirac’s formulation of the delta function
Applications
- electromagnetism for calculating fields from charge distributions
- quantum field theory for calculating propagators
- structural engineering for determining the response of a structure to a point load
- acoustics for modeling sound from a point source
- image processing for deblurring (deconvolution)
Brevets :
Potential Innovations Ideas
!niveaux !!! Adhésion obligatoire
Vous devez être membre de l'association pour accéder à ce contenu.
DISPONIBLE POUR DE NOUVEAUX DÉFIS
Ingénieur mécanique, chef de projet ou de R&D
Disponible pour un nouveau défi dans un court délai.
Contactez-moi sur LinkedIn
Intégration électronique métal-plastique, Conception à coût réduit, BPF, Ergonomie, Appareils et consommables de volume moyen à élevé, Secteurs réglementés, CE et FDA, CAO, Solidworks, Lean Sigma Black Belt, ISO 13485 médical
Nous recherchons un nouveau sponsor
Votre entreprise ou institution est dans le domaine de la technique, de la science ou de la recherche ?
> envoyez-nous un message <
Recevez tous les nouveaux articles
Gratuit, pas de spam, email non distribué ni revendu
ou vous pouvez obtenir votre adhésion complète - gratuitement - pour accéder à tout le contenu restreint >ici<
Historical Context
Fundamental Solution (Green’s Function)
(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)
Related Invention, Innovation & Technical Principles