Maison » Frame-Dragging (Lense-Thirring Effect)

Frame-Dragging (Lense-Thirring Effect)

1918
  • Josef Lense
  • Hans Thirring

General relativity predicts that a massive, rotating object should ‘drag’ the fabric of spacetime around with it, a phenomenon known as frame-dragging or the Lense-Thirring effect. This means a gyroscope orbiting the rotating body will precess, not because of any applied torque, but because spacetime itself is being twisted by the body’s rotation.

The Lense-Thirring effect is a subtle consequence of the Einstein Field Equations when applied to a rotating mass. While a non-rotating mass curves spacetime statically (described by the Schwarzschild metric), a rotating mass introduces a ‘twist’ to spacetime. This is analogous to a spinning ball in a viscous fluid like honey; the fluid near the ball is dragged by its rotation. In frame-dragging, spacetime itself is dragged. The effect is extremely weak. For Earth, the predicted precession of a gyroscope in a polar orbit is only about 42 milliarcseconds per year.

The most definitive confirmation came from the Gravity Probe B (GP-B) satellite mission, launched in 2004. GP-B used four ultra-precise gyroscopes in a polar orbit. After years of data analysis, the science team announced in 2011 that they had measured the frame-dragging effect to within 19% of the value predicted by general relativity. The effect is much more pronounced near rapidly rotating, extremely massive objects like black holes and neutron stars. Frame-dragging plays a crucial role in the astrophysics of these objects, influencing the behavior of accretion disks and potentially providing a mechanism for launching powerful relativistic jets from the poles of active galactic nuclei.

UNESCO Nomenclature: 2211
– Relativity

Type

Abstract System

Disruption

Substantial

Utilisation

Widespread Use

Precursors

  • Einstein Field Equations
  • Mach’s principle (as a conceptual influence)
  • Concept of angular momentum and rotation in classical mécanique

Applications

  • testing a fundamental prediction of general relativity with satellites like gravity probe b
  • measuring the spin of black holes
  • understanding the dynamics of accretion disks around massive objects
  • providing high-precision measurements of earth’s gravitational field

Brevets :

QUE

Potential Innovations Ideas

!niveaux !!! Adhésion obligatoire

Vous devez être membre de l'association pour accéder à ce contenu.

S’inscrire maintenant

Vous êtes déjà membre ? Connectez-vous ici
Related to: frame-dragging, lense-thirring effect, general relativity, spacetime, gravity probe b, gyroscope, black hole spin, rotation

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

DISPONIBLE POUR DE NOUVEAUX DÉFIS
Ingénieur mécanique, chef de projet ou de R&D
Développement de produits efficace

Disponible pour un nouveau défi dans un court délai.
Contactez-moi sur LinkedIn
Intégration électronique métal-plastique, Conception à coût réduit, BPF, Ergonomie, Appareils et consommables de volume moyen à élevé, Secteurs réglementés, CE et FDA, CAO, Solidworks, Lean Sigma Black Belt, ISO 13485 médical

Nous recherchons un nouveau sponsor

 

Votre entreprise ou institution est dans le domaine de la technique, de la science ou de la recherche ?
> envoyez-nous un message <

Recevez tous les nouveaux articles
Gratuit, pas de spam, email non distribué ni revendu

ou vous pouvez obtenir votre adhésion complète - gratuitement - pour accéder à tout le contenu restreint >ici<

Related Invention, Innovation & Technical Principles

Retour en haut

Vous aimerez peut-être aussi