Euclid’s five postulates form the axiomatic basis for Euclidean geometry as described in his treatise, ‘Elements’. They are fundamental assumptions from which all other theorems are logically derived. The first four concern the construction of lines and circles, while the fifth, the parallel postulate, uniquely defines the flat, non-curved nature of Euclidean space. These axioms established the deductive method in mathematics.
Euclid’s Postulates
- Euclid of Alexandria
The five postulates are the bedrock of the system Euclid developed. They are not proven, but assumed to be true, providing a starting point for logical deduction. The first three are constructive: 1. A straight line segment can be drawn joining any two points. 2. Any straight line segment can be extended indefinitely in a straight line. 3. Given any straight line segment, a circle can be drawn having the segment as radius and one endpoint as center. The fourth postulate ensures uniformity: 4. All right angles are congruent.
The fifth postulate is the most complex and famous, setting Euclidean geometry apart. For centuries, mathematicians attempted to prove it as a theorem derived from the first four, believing it was less self-evident. These efforts were unsuccessful but profoundly important, as they eventually dirigé to the discovery of non-Euclidean geometries in the 19th century by mathematicians like Lobachevsky, Bolyai, and Riemann, who explored systems where the fifth postulate was replaced by an alternative. This demonstrated that Euclid’s system was not the only possible logical geometry, revolutionizing mathematics and our understanding of space itself. The axiomatic méthode pioneered by Euclid remains the standard for modern mathematics, providing a rigorous framework for building complex theories from a small set of foundational principles.
Type
Disruption
Utilisation
Precursors
- Geometric knowledge from Babylonian and Egyptian mathematics
- Work of earlier Greek mathematicians like Thales of Miletus and Pythagoras
- Plato’s philosophical emphasis on ideal forms and logical deduction
- Aristotle’s development of formal logic
Applications
- foundations of classical mécanique
- architectural design and civil engineering
- computer graphics and Logiciel de CAO
- optical lens design
- cartography and navigation
Brevets :
Potential Innovations Ideas
!niveaux !!! Adhésion obligatoire
Vous devez être membre de l'association pour accéder à ce contenu.
DISPONIBLE POUR DE NOUVEAUX DÉFIS
Ingénieur mécanique, chef de projet ou de R&D
Disponible pour un nouveau défi dans un court délai.
Contactez-moi sur LinkedIn
Intégration électronique métal-plastique, Conception à coût réduit, BPF, Ergonomie, Appareils et consommables de volume moyen à élevé, Secteurs réglementés, CE et FDA, CAO, Solidworks, Lean Sigma Black Belt, ISO 13485 médical
Nous recherchons un nouveau sponsor
Votre entreprise ou institution est dans le domaine de la technique, de la science ou de la recherche ?
> envoyez-nous un message <
Recevez tous les nouveaux articles
Gratuit, pas de spam, email non distribué ni revendu
ou vous pouvez obtenir votre adhésion complète - gratuitement - pour accéder à tout le contenu restreint >ici<
Related Invention, Innovation & Technical Principles