Maison » Ductility and Brittleness

Ductility and Brittleness

1850

Ductility is a measure of a material’s ability to undergo significant plastic deformation before rupture, often quantified by percent elongation or percent reduction in area. Ductile materials, like steel, show a long plastic region on their stress-strain curve. Brittleness is the opposite; brittle materials, like ceramics or cast iron, fracture with little to no plastic deformation.

The distinction between ductile and brittle behavior is clearly visible on the stress-strain curve. A ductile material exhibits a significant strain after the yield point and before the fracture point. This large area under the curve after yielding indicates that the material can absorb a great deal of energy before it breaks. This property is crucial for safety in many engineering applications, as a ductile failure provides a visible warning (e.g., bending or stretching) before a complete collapse. Key measures of ductility are percent elongation, [latex](\frac{L_f – L_0}{L_0}) \times 100[/latex], and percent reduction in area, [latex](\frac{A_0 – A_f}{A_0}) \times 100[/latex], where the ‘f’ subscript denotes the final dimension at fracture.

Conversely, a brittle material shows very little strain after its elastic limit. The fracture stress is often close to the ultimate tensile strength, and failure occurs suddenly and without warning. Ceramics, glasses, and some polymers are classic examples. The behavior of a material can also depend on external conditions. For instance, many steels that are ductile at room temperature undergo a ductile-to-brittle transition at low temperatures, a phenomenon that has led to catastrophic failures, such as in the Liberty ships during World War II.

UNESCO Nomenclature: 3322
– Materials science

Type

Material Property

Perturbation

Fondamentaux

Utilisation

Une utilisation répandue

Précurseurs

  • metallurgical practices of annealing and tempering to control material properties
  • observations of material failure modes in early engineering structures
  • development of the tensile test as a standard characterization method

Applications

  • selection of materials for applications requiring forming (e.g., car bodies)
  • design of structures to ensure failure is gradual (ductile) rather than catastrophic (brittle)
  • wire drawing and metal extrusion processes
  • assessing material performance at low temperatures, where many materials become brittle

Brevets :

NA

Innovations potentielles Idées

!niveaux !!! Adhésion obligatoire

Vous devez être membre de l'association pour accéder à ce contenu.

S’inscrire maintenant

Vous êtes déjà membre ? Connectez-vous ici
Related to: ductility, brittleness, plastic deformation, fracture, elongation, reduction in area, ductile failure, brittle fracture, material behavior, stress-strain curve.

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

DISPONIBLE POUR DE NOUVEAUX DÉFIS
Ingénieur mécanique, chef de projet, ingénierie des procédés ou R&D
Développement de produits efficace

Disponible pour un nouveau défi dans un court délai.
Contactez-moi sur LinkedIn
Intégration électronique métal-plastique, Conception à coût réduit, BPF, Ergonomie, Appareils et consommables de volume moyen à élevé, Production allégée, Secteurs réglementés, CE et FDA, CAO, Solidworks, Lean Sigma Black Belt, ISO 13485 médical

Nous recherchons un nouveau sponsor

 

Votre entreprise ou institution est dans le domaine de la technique, de la science ou de la recherche ?
> envoyez-nous un message <

Recevez tous les nouveaux articles
Gratuit, pas de spam, email non distribué ni revendu

ou vous pouvez obtenir votre adhésion complète - gratuitement - pour accéder à tout le contenu restreint >ici<

Invention, innovation et principes techniques connexes

Retour en haut

Vous aimerez peut-être aussi