Maison » Decimal Reduction Time (D-value)

Decimal Reduction Time (D-value)

1920
Thermal sterilization setup with microbial cultures and temperature monitoring in applied microbiology.

The D-value is the time required at a specific temperature to kill 90% (or one log reduction) of a target microorganism population. It is a critical parameter in thermal sterilization, quantifying a microbe’s resistance to heat. For example, if a population of [latex]10^6[/latex] spores has a D-value of 2 minutes, it takes 2 minutes to reduce it to [latex]10^5[/latex].

The D-value, or decimal reduction time, is a cornerstone of thermal processing science, providing a precise measure of an organism’s heat resistance. It is specific to a particular microorganism under a defined set of conditions (temperature, pH, water activity, etc.). The value is derived from a microbial survivor curve, which is a plot of the logarithm of the number of surviving organisms versus the exposure time at a constant temperature. For a first-order reaction, this plot yields a straight line, and the D-value is the negative reciprocal of the slope. Mathematically, it represents the time required for a 90% reduction in the microbial population. For example, a D-value of 1.5 minutes at 121°C ([latex]D_{121}[/latex]) for Clostridium botulinum spores means that for every 1.5 minutes of exposure at that temperature, the population of these spores will decrease by a factor of ten. To achieve a 12-log reduction (a standard for low-acid canned foods, known as the ’12D concept’), the required processing time would be [latex]12 \times D[/latex], or [latex]12 \times 1.5 = 18[/latex] minutes. This ensures an extremely high probability that no viable C. botulinum spores remain. The D-value is critical for designing sterilization processes that are effective enough to ensure safety but not so harsh that they degrade the quality of the product, whether it’s food, a pharmaceutical, or a medical device. Different microorganisms have vastly different D-values; vegetative bacteria are typically much less resistant (lower D-value) than bacterial endospores.

The concept of quantifying thermal resistance emerged from pioneering work in the early 20th century, particularly within the canning industry. Scientists like W.D. Bigelow and C. Olin Ball sought to move beyond simple trial-and-error methods for food preservation. They conducted systematic studies to determine the time and temperature combinations needed to destroy spoilage and pathogenic organisms, most notably Clostridium botulinum. This research dirigé to the development of the ‘thermal death time’ (TDT) curve and the formalization of the D-value and the related Z-value (which describes the temperature dependence of the D-value). This quantitative approach transformed food processing from an art into a science, enabling the safe, large-scale production of canned foods and forming the basis for modern sterilization validation across multiple industries. It provided a universal language to describe microbial resistance and process lethality.

UNESCO Nomenclature: 2401
– Microbiology

Type

Quantitative Metric

Disruption

Substantial

Utilisation

Widespread Use

Precursors

  • arrhenius equation describing temperature dependence of reaction rates
  • first-order reaction kinetics
  • studies by bigelow and esty on thermal death of bacteria

Applications

  • designing and validating pasteurization and sterilization cycles in the food industry
  • calculating sterilization times for medical devices
  • environmental microbiology studies
  • pharmaceutical manufacturing contrôle de processus

Brevets :

QUE

Potential Innovations Ideas

!niveaux !!! Adhésion obligatoire

Vous devez être membre de l'association pour accéder à ce contenu.

S’inscrire maintenant

Vous êtes déjà membre ? Connectez-vous ici
Related to: d-value, decimal reduction time, thermal sterilization, microbiology, log reduction, heat resistance, food processing, clostridium botulinum, kinetics, validation.

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

DISPONIBLE POUR DE NOUVEAUX DÉFIS
Mechanical Engineer, Project, Process Engineering or R&D Manager
Développement de produits efficace

Disponible pour un nouveau défi dans un court délai.
Contactez-moi sur LinkedIn
Plastic metal electronics integration, Design-to-cost, GMP, Ergonomics, Medium to high-volume devices & consumables, Lean Manufacturing, Regulated industries, CE & FDA, CAD, Solidworks, Lean Sigma Black Belt, medical ISO 13485

Nous recherchons un nouveau sponsor

 

Votre entreprise ou institution est dans le domaine de la technique, de la science ou de la recherche ?
> envoyez-nous un message <

Recevez tous les nouveaux articles
Gratuit, pas de spam, email non distribué ni revendu

ou vous pouvez obtenir votre adhésion complète - gratuitement - pour accéder à tout le contenu restreint >ici<

Historical Context

(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)

Related Invention, Innovation & Technical Principles

Retour en haut

Vous aimerez peut-être aussi