Maison » Deborah Number

Deborah Number

1960
  • Markus Reiner

The Deborah number is a dimensionless quantity in rheology, used to characterize the fluidity of materials. It is the ratio of the relaxation time, which is an intrinsic property of the material, to the characteristic time scale of the experiment or observation. The formula is [latex]De = \frac{t_c}{t_p}[/latex], where [latex]t_c[/latex] is the relaxation time and [latex]t_p[/latex] is the observation time.

The Deborah number provides a crucial cadre for understanding whether a material will behave as a fluid or a solid under specific conditions. A high Deborah number ([latex]De >> 1[/latex]) indicates solid-like behavior, where the material does not have enough time to relax and flow before the deformation process is complete. In this regime, the material’s elastic properties dominate. A classic example is silly putty, which can be stretched slowly like a liquid ([latex]De <> 1[/latex]).

Conversely, a low Deborah number ([latex]De << 1[/latex]) signifies fluid-like behavior. The observation time is much longer than the material’s relaxation time, allowing molecular chains or particles to rearrange and flow in response to the applied stress. Most common liquids like water have extremely short relaxation times, so their Deborah number is almost always very low in everyday situations, and they behave as simple viscous fluids.

The concept was famously proposed by Markus Reiner, who named it after a line in a song by the prophetess Deborah in the Bible: “The mountains flowed before the Lord”. This poetic reference captures the essence of the concept: even seemingly solid materials like mountains can flow if observed over a sufficiently long timescale (geological time). The Deborah number is fundamental in process engineering, particularly for viscoelastic materials like polymers, where processing speeds (determining [latex]t_p[/latex]) must be carefully controlled relative to the material’s relaxation time ([latex]t_c[/latex]) to avoid defects like melt fracture.

UNESCO Nomenclature: 2203
– Continuum mechanics

Type

Abstract System

Disruption

Substantial

Utilisation

Widespread Use

Precursors

  • concept of viscosity (newton)
  • theory of elasticity (hooke)
  • development of continuum mécanique
  • understanding of molecular relaxation processes

Applications

  • polymer processing
  • glass fabrication
  • geophysics (mantle convection)
  • food processing

Brevets :

QUE

Potential Innovations Ideas

!niveaux !!! Adhésion obligatoire

Vous devez être membre de l'association pour accéder à ce contenu.

S’inscrire maintenant

Vous êtes déjà membre ? Connectez-vous ici
Related to: deborah number, rheology, viscoelasticity, dimensionless number, relaxation time, fluid dynamics, continuum mechanics, markus reiner

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

DISPONIBLE POUR DE NOUVEAUX DÉFIS
Ingénieur mécanique, chef de projet ou de R&D
Développement de produits efficace

Disponible pour un nouveau défi dans un court délai.
Contactez-moi sur LinkedIn
Intégration électronique métal-plastique, Conception à coût réduit, BPF, Ergonomie, Appareils et consommables de volume moyen à élevé, Secteurs réglementés, CE et FDA, CAO, Solidworks, Lean Sigma Black Belt, ISO 13485 médical

Nous recherchons un nouveau sponsor

 

Votre entreprise ou institution est dans le domaine de la technique, de la science ou de la recherche ?
> envoyez-nous un message <

Recevez tous les nouveaux articles
Gratuit, pas de spam, email non distribué ni revendu

ou vous pouvez obtenir votre adhésion complète - gratuitement - pour accéder à tout le contenu restreint >ici<

Related Invention, Innovation & Technical Principles

Retour en haut

Vous aimerez peut-être aussi