Hogar » Method of Ordinary Least Squares (OLS)

Method of Ordinary Least Squares (OLS)

1805
  • Adrien-Marie Legendre
  • Carl Friedrich Gauss
Historical office scene depicting the Method of Ordinary Least Squares in mathematical statistics.

A standard approach for approximating solutions to overdetermined systems by finding model parameters that minimize the sum of the squared differences between observed and predicted values. This sum is known as the sum of squared residuals (SSR). The goal is to find the parameters [latex]\hat{\beta}[/latex] that minimize the function [latex]S(\beta) = \sum_{i=1}^{n} (y_i – x_i^T \beta)^2[/latex].

El método of ordinary least squares is a cornerstone of regression analysis. It provides a direct way to estimate the unknown parameters in a linear model. The principle is to find the line (or hyperplane in multiple regression) that is closest to all the data points simultaneously. ‘Closest’ is defined in terms of minimizing the vertical distances from each point to the line, specifically, the sum of the squares of these distances (residuals).

This minimization problem can be solved using calculus. By taking the derivative of the sum of squared residuals function [latex]S(\beta)[/latex] with respect to the parameter vector [latex]\beta[/latex] and setting it to zero, we derive a set of equations known as the ‘normal equations’. In matrix form, these are expressed as [latex]X^T X \hat{\beta} = X^T y[/latex], where [latex]X[/latex] is the matrix of independent variables and [latex]y[/latex] is the vector of the dependent variable.

The solution for the estimated coefficient vector is then given by [latex]\hat{\beta} = (X^T X)^{-1} X^T y[/latex]. This closed-form solution is computationally efficient and provides a unique estimate, provided that the matrix [latex]X^T X[/latex] is invertible (i.e., there is no perfect multicollinearity among the independent variables). Geometrically, the OLS solution corresponds to an orthogonal projection of the outcome vector [latex]y[/latex] onto the vector subspace spanned by the columns of the predictor matrix [latex]X[/latex]. While powerful, OLS is sensitive to outliers, as squaring the residuals gives large errors a disproportionately large influence on the final fit.

UNESCO Nomenclature: 1209
- Estadísticas

Tipo

Software/Algoritmo

Disrupción

Sustancial

Utilización

Uso generalizado

Precursores

  • Linear algebra (matrix operations)
  • Differential calculus (for finding minima)
  • Theory of errors in observation (developed by astronomers)
  • Analytic geometry (Descartes)

Aplicaciones

  • parameter estimation in linear regression models
  • procesamiento de señales and digital filtering
  • control theory for system identification
  • econometrics for modeling economic relationships
  • astronomical calculations of orbits

Patentes:

NA

Posibles ideas innovadoras

Membresía obligatoria de Professionals (100% free)

Debes ser miembro de Professionals (100% free) para acceder a este contenido.

Únete ahora

¿Ya eres miembro? Accede aquí
Related to: least squares, OLS, parameter estimation, sum of squared residuals, optimization, normal equations, linear algebra, regression analysis, curve fitting, data fitting.

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

DISPONIBLE PARA NUEVOS RETOS
Ingeniero Mecánico, Gerente de Proyectos, Ingeniería de Procesos o I+D
Desarrollo eficaz de productos

Disponible para un nuevo desafío a corto plazo.
Contáctame en LinkedIn
Integración de electrónica de metal y plástico, diseño a coste, GMP, ergonomía, dispositivos y consumibles de volumen medio a alto, fabricación eficiente, industrias reguladas, CE y FDA, CAD, Solidworks, cinturón negro Lean Sigma, ISO 13485 médico

Estamos buscando un nuevo patrocinador

 

¿Su empresa o institución se dedica a la técnica, la ciencia o la investigación?
> Envíanos un mensaje <

Recibe todos los artículos nuevos
Gratuito, sin spam, correo electrónico no distribuido ni revendido.

o puedes obtener tu membresía completa -gratis- para acceder a todo el contenido restringido >aquí<

Contexto histórico

(si se desconoce la fecha o no es relevante, por ejemplo "mecánica de fluidos", se ofrece una estimación redondeada de su notable aparición)

Invención, innovación y principios técnicos relacionados

Scroll al inicio

También te puede interesar