The Navier–Stokes equations are a set of non-linear partial differential equations describing the motion of viscous fluid substances. They are a statement of Newton’s second law, balancing momentum changes with pressure gradients, viscous forces, and external forces. For an incompressible fluid, the equation is [latex]\rho (\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v}) = -\nabla p + \mu \nabla^2 \mathbf{v} + \mathbf{f}[/latex].
Navier–Stokes Equations
- Claude-Louis Navier
- George Gabriel Stokes
The Navier-Stokes equations are the cornerstone of modern fluid dynamics. The terms in the equation represent the fundamental physical principles governing fluid motion. The left side, [latex]\rho (\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v})[/latex], represents the inertial forces per unit volume, broken down into the unsteady acceleration (change in velocity over time) and the convective acceleration (change in velocity due to the fluid moving to a new location). The right side details the forces acting on the fluid. The term [latex]-\nabla p[/latex] is the pressure gradient, which drives flow from high-pressure to low-pressure regions. The term [latex]\mu \nabla^2 \mathbf{v}[/latex] represents the viscous forces, which act as an internal friction within the fluid, resisting motion and dissipating energy. Finally, [latex]\mathbf{f}[/latex] accounts for external body forces like gravity.
These equations are notoriously difficult to solve analytically due to their non-linear nature, specifically the convective acceleration term [latex]\mathbf{v} \cdot \nabla \mathbf{v}[/latex]. This non-linearity is the primary cause of turbulence, a complex and chaotic flow regime that remains one of the great unsolved problems in classical physics. In fact, proving the existence and smoothness of solutions to the three-dimensional Navier-Stokes equations is one of the seven Millennium Prize Problems posed by the Clay Mathematics Institute.
For practical applications, engineers and scientists rely on computational fluid dynamics (CFD), where supercomputers are used to find approximate numerical solutions. By discretizing the fluid domain into a fine mesh and solving the equations for each cell, CFD can simulate everything from the airflow over a Formula 1 car to the circulation of the Earth’s oceans, making the Navier-Stokes equations an indispensable tool in modern science and engineering.
Tipo
Disruption
Utilización
Precursors
- isaac newton’s laws of motion
- leonhard euler’s equations for inviscid flow
- augustin-louis cauchy’s momentum equation
- the development of partial differential calculus
Aplicaciones
- aircraft and car design
- weather forecasting
- blood flow analysis
- power station design
- analysis of pollution dispersion
- design of oil pipelines
Patentes:
Potential Innovations Ideas
Membresía obligatoria de Professionals (100% free)
Debes ser miembro de Professionals (100% free) para acceder a este contenido.
DISPONIBLE PARA NUEVOS RETOS
Ingeniero Mecánico, Gerente de Proyectos o de I+D
Disponible para un nuevo desafío a corto plazo.
Contáctame en LinkedIn
Integración de electrónica de plástico y metal, diseño a coste, GMP, ergonomía, dispositivos y consumibles de volumen medio a alto, industrias reguladas, CE y FDA, CAD, Solidworks, cinturón negro Lean Sigma, ISO 13485 médico
Estamos buscando un nuevo patrocinador
¿Su empresa o institución se dedica a la técnica, la ciencia o la investigación?
> Envíanos un mensaje <
Recibe todos los artículos nuevos
Gratuito, sin spam, correo electrónico no distribuido ni revendido.
o puedes obtener tu membresía completa -gratis- para acceder a todo el contenido restringido >aquí<
Related Invention, Innovation & Technical Principles