Heim » Das Gauß-Bonnet-Theorem

Das Gauß-Bonnet-Theorem

1848
  • Carl Friedrich Gauss
  • Pierre Ossian Bonnet
Arbeitszimmer eines Mathematikers mit Pergamentpapieren und geometrischen Diagrammen im Zusammenhang mit dem Gauß-Bonnet-Theorem.

(generate image for illustration only)

Das Gauß-Bonnet-Theorem verbindet die Geometrie einer kompakten zweidimensionalen Oberfläche mit ihrer Topologie. Er besagt, dass das Integral der Gaußschen Krümmung [latex]K[/latex] über die gesamte Fläche [latex]M[/latex] gleich [latex]2\pi[/latex] mal der Euler-Charakteristik [latex]\chi(M)[/latex] der Fläche ist. Die Formel lautet [latex]\int_M K \, dA = 2\pi \chi(M)[/latex].

The Gauss-Bonnet theorem is a remarkable statement that provides a deep link between the local geometric properties of a surface and its global topological structure. The left side of the equation, [latex]\int_M K \, dA[/latex], involves integrating the Gaussian curvature—a quantity that can vary from point to point—over the entire surface. This is a purely geometric quantity. The right side, [latex]2\pi \chi(M)[/latex], involves the Euler characteristic, [latex]\chi(M) = V – E + F[/latex] (Vertices – Edges + Faces for any triangulation of the surface), which is a topological invariant. This means [latex]\chi(M)[/latex] does not change under continuous deformations of the surface; for example, a sphere always has [latex]\chi=2[/latex] and a torus always has [latex]\chi=0[/latex], regardless of how they are stretched or bent.

The theorem implies that no matter how you deform a surface, the total curvature must remain constant. If you create a dimple in a sphere (introducing negative curvature), you must simultaneously create areas of higher positive curvature elsewhere to keep the total integral equal to [latex]4\pi[/latex] (since [latex]\chi(sphere)=2[/latex]). For a torus, the total curvature must always be zero; any region of positive curvature must be exactly balanced by a region of negative curvature. This theorem was a precursor to more general index theorems, like the Atiyah-Singer index theorem, which relate analytical and topological invariants in higher dimensions.

UNESCO Nomenclature: 1204
- Geometrie

Typ

Abstraktes System

Unterbrechung

Grundlegendes

Verwendung

Weit verbreitete Verwendung

Vorläufersubstanzen

  • Girard’s theorem on the area of spherical triangles
  • Gauss’s work on intrinsic curvature (Theorema Egregium)
  • Euler’s polyhedral formula (V – E + F = 2)
  • Development of integral calculus

Anwendungen

  • topology (linking a geometric property, curvature, to a topological invariant, the euler characteristic)
  • physics (in the context of quantum field theory and string theory)
  • computer graphics (for mesh processing and analysis)
  • robotics (for path planning on complex surfaces)

Patente:

NA

Mögliche Innovationsideen

!Professionals (100% free) Mitgliedschaft erforderlich

Sie müssen ein Professionals (100% free) Mitglied sein, um auf diesen Inhalt zugreifen zu können.

Jetzt teilnehmen

Sie sind bereits Mitglied? Hier einloggen
Related to: gauss-bonnet, gaussian curvature, euler characteristic, topology, geometry, integral, surface, invariant.

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert

VERFÜGBAR FÜR NEUE HERAUSFORDERUNGEN
Maschinenbauingenieur, Projekt-, Verfahrenstechnik- oder F&E-Manager
Effektive Produktentwicklung

Kurzfristig für eine neue Herausforderung verfügbar.
Kontaktieren Sie mich auf LinkedIn
Integration von Kunststoff-Metall-Elektronik, Design-to-Cost, GMP, Ergonomie, Geräte und Verbrauchsmaterialien in mittleren bis hohen Stückzahlen, Lean Manufacturing, regulierte Branchen, CE und FDA, CAD, Solidworks, Lean Sigma Black Belt, medizinische ISO 13485

Wir suchen einen neuen Sponsor

 

Ihr Unternehmen oder Ihre Institution beschäftigt sich mit Technik, Wissenschaft oder Forschung?
> Senden Sie uns eine Nachricht <

Erhalten Sie alle neuen Artikel
Kostenlos, kein Spam, E-Mail wird nicht verteilt oder weiterverkauft

oder Sie können eine kostenlose Vollmitgliedschaft erwerben, um auf alle eingeschränkten Inhalte zuzugreifen >Hier<

Historischer Kontext

(wenn das Datum nicht bekannt oder nicht relevant ist, z. B. "Strömungsmechanik", wird eine gerundete Schätzung des bemerkenswerten Erscheinens angegeben)

Verwandte Erfindungen, Innovationen und technische Prinzipien

Nach oben scrollen

Das gefällt dir vielleicht auch