This is a fundamental equation in quantum mechanics that describes how the quantum state of a physical system changes over time. It is a linear partial differential equation for the wavefunction, [latex]\Psi(x, t)[/latex]. The time-dependent version is [latex]i\hbar\frac{\partial}{\partial t}\Psi = \hat{H}\Psi[/latex], where [latex]\hat{H}[/latex] is the Hamiltonian operator, representing the total energy of the system.
Schrödinger Equation
- Erwin Schrödinger
The Schrödinger equation is the quantum mechanical counterpart to Newton’s second law in classical Mechanik. While Newton’s law predicts the trajectory of a particle, the Schrödinger equation predicts the future behavior of a system’s wavefunction. The wavefunction, [latex]\Psi[/latex], is a complex-valued probability amplitude, and the square of its magnitude, [latex]|\Psi|^2[/latex], gives the probability density of finding the particle at a given position and time. The equation comes in two main forms: time-dependent and time-independent.
The time-dependent Schrödinger equation (TDSE), [latex]i\hbar\frac{\partial}{\partial t}\Psi(x, t) = \hat{H}\Psi(x, t)[/latex], describes a system evolving in time. The time-independent Schrödinger equation (TISE), [latex]\hat{H}\Psi(x) = E\Psi(x)[/latex], is used for systems in a stationary state, where the energy [latex]E[/latex] is constant. Solving the TISE for a given potential yields the allowed energy eigenvalues ([latex]E[/latex]) and the corresponding energy eigenfunctions ([latex]\Psi[/latex]), which represent the stable states of the system, such as the electron orbitals in an atom. The Hamiltonian operator [latex]\hat{H}[/latex] is constructed from the classical expression for the total energy (kinetic plus potential) by replacing classical variables with their corresponding quantum operators. For a single non-relativistic particle, [latex]\hat{H} = -\frac{\hbar^2}{2m}\nabla^2 + V(x, t)[/latex].
Typ
Disruption
Verwendung
Precursors
- Hamiltonian mechanics (1833)
- De Broglie’s wave-particle duality hypothesis (1924)
- Matrix mechanics (Heisenberg, 1925)
- Classical wave equations
Anwendungen
- predicting atomic and molecular orbitals (quantum chemistry)
- designing semiconductor devices
- modeling nuclear reactions
- understanding superconductivity
- quantum computing algorithm design
Patente:
Potential Innovations Ideas
!Professionals (100% free) Mitgliedschaft erforderlich
Sie müssen ein Professionals (100% free) Mitglied sein, um auf diesen Inhalt zugreifen zu können.
VERFÜGBAR FÜR NEUE HERAUSFORDERUNGEN
Maschinenbauingenieur, Projekt- oder F&E-Manager
Kurzfristig für eine neue Herausforderung verfügbar.
Kontaktieren Sie mich auf LinkedIn
Integration von Kunststoff-Metall-Elektronik, Design-to-Cost, GMP, Ergonomie, Geräte und Verbrauchsmaterialien in mittleren bis hohen Stückzahlen, regulierte Branchen, CE und FDA, CAD, Solidworks, Lean Sigma Black Belt, medizinische ISO 13485
Wir suchen einen neuen Sponsor
Ihr Unternehmen oder Ihre Institution beschäftigt sich mit Technik, Wissenschaft oder Forschung?
> Senden Sie uns eine Nachricht <
Erhalten Sie alle neuen Artikel
Kostenlos, kein Spam, E-Mail wird nicht verteilt oder weiterverkauft
oder Sie können eine kostenlose Vollmitgliedschaft erwerben, um auf alle eingeschränkten Inhalte zuzugreifen >Hier<
Related Invention, Innovation & Technical Principles