The Prime Number Theorem describes the asymptotic distribution of prime numbers among the integers. It states that the prime-counting function [latex]\pi(x)[/latex], which gives the number of primes less than or equal to [latex]x[/latex], is asymptotically equivalent to [latex]x / \ln(x)[/latex]. Formally, [latex]\lim_{x \to \infty} \frac{\pi(x)}{x/\ln(x)} = 1[/latex]. This provides a fundamental link between primes and the natural logarithm.
The Prime Number Theorem
- Jacques Hadamard
- Charles-Jean de la Vallée Poussin
The Prime Number Theorem (PNT) is a cornerstone of number theory that provides an approximate description of how prime numbers are distributed. The prime-counting function, [latex]\pi(x)[/latex], is a step function that jumps by 1 at each prime number. While the exact location of primes appears random, the PNT reveals a regular asymptotic behavior. The theorem doesn’t say that the difference between [latex]\pi(x)[/latex] and [latex]x/\ln(x)[/latex] is small, but rather that their ratio approaches 1 as [latex]x[/latex] becomes arbitrarily large. This means that for a large number [latex]x[/latex], the probability that a randomly chosen integer near [latex]x[/latex] is prime is about [latex]1/\ln(x)[/latex].
The idea was first conjectured in the late 18th century by Adrien-Marie Legendre (1798) and Carl Friedrich Gauss (1792), based on empirical evidence from tables of primes. They both proposed that [latex]\pi(x)[/latex] is approximately [latex]x/(\ln(x) – C)[/latex] for some constant C. However, proving this relationship required significant advances in mathematics, particularly in complex analysis. The first rigorous proofs were independently achieved by Jacques Hadamard and Charles-Jean de la Vallée Poussin in 1896. Their proofs were non-elementary, relying crucially on the properties of the Riemann zeta function in the complex plane, specifically showing it has no zeros on the line where the real part is 1.
Typ
Unterbrechung
Verwendung
Vorläufersubstanzen
- Euclid’s proof of the infinitude of primes (c. 300 BC)
- Euler’s product formula connecting primes and the zeta function (1737)
- Tables of prime numbers compiled by mathematicians
- Legendre’s conjecture on prime density (1798)
- Gauss’s conjecture on the logarithmic integral (1792)
- Chebyshev’s work providing bounds for [latex]\pi(x)[/latex] (1852)
- Riemann’s 1859 paper on the zeta function
Anwendungen
- analytic number theory
- Kryptographie (e.g., estimating the density of suitable primes for RSA)
- theoretical computer science for analyzing algorithms involving primes
- research into the Riemann hypothesis
- development of sieve methods
Patente:
Mögliche Innovationsideen
!Professionals (100% free) Mitgliedschaft erforderlich
Sie müssen ein Professionals (100% free) Mitglied sein, um auf diesen Inhalt zugreifen zu können.
VERFÜGBAR FÜR NEUE HERAUSFORDERUNGEN
Maschinenbauingenieur, Projekt-, Verfahrenstechnik- oder F&E-Manager
Kurzfristig für eine neue Herausforderung verfügbar.
Kontaktieren Sie mich auf LinkedIn
Integration von Kunststoff-Metall-Elektronik, Design-to-Cost, GMP, Ergonomie, Geräte und Verbrauchsmaterialien in mittleren bis hohen Stückzahlen, Lean Manufacturing, regulierte Branchen, CE und FDA, CAD, Solidworks, Lean Sigma Black Belt, medizinische ISO 13485
Wir suchen einen neuen Sponsor
Ihr Unternehmen oder Ihre Institution beschäftigt sich mit Technik, Wissenschaft oder Forschung?
> Senden Sie uns eine Nachricht <
Erhalten Sie alle neuen Artikel
Kostenlos, kein Spam, E-Mail wird nicht verteilt oder weiterverkauft
oder Sie können eine kostenlose Vollmitgliedschaft erwerben, um auf alle eingeschränkten Inhalte zuzugreifen >Hier<
Verwandte Erfindungen, Innovationen und technische Prinzipien