Heim » Peukert’s Law

Peukert’s Law

1897
  • Wilhelm Peukert

An empirical formula that describes how the available capacity of a battery decreases as the rate of discharge increases. The law is stated as [latex]C_p = I^k t[/latex], where [latex]C_p[/latex] is the capacity at a one-ampere discharge rate, [latex]I[/latex] is the discharge current, [latex]t[/latex] is the discharge time, and [latex]k[/latex] is the Peukert constant, specific to the battery type. It quantifies the inefficiency at high loads.

Peukert’s law provides a more accurate picture of battery capacity than the simple amp-hour rating, which is typically specified at a low, constant discharge rate. The law accounts for the fact that at high discharge rates, the battery becomes less efficient. This inefficiency stems from several factors. Firstly, the internal resistance of the battery causes energy to be lost as heat, a loss that increases with the square of the current ([latex]P_{loss} = I^2R[/latex]). This wasted energy is unavailable to the load.

Secondly, the electrochemical processes within the battery have finite speeds. At high discharge rates, the chemical reactions cannot keep pace, and the diffusion of ions within the electrolyte becomes a bottleneck. This leads to a depletion of reactants near the electrodes’ surfaces, causing the voltage to drop prematurely and cutting off the discharge before all the active material has been utilized. The unused material means the effective capacity delivered is lower.

The Peukert constant, [latex]k[/latex], is determined empirically and reflects how much a battery is affected by high discharge rates. A value of [latex]k[/latex] close to 1 indicates an ideal battery that is not significantly affected by the discharge rate. Lead-acid batteries have a relatively high [latex]k[/latex] (typically 1.1 to 1.3), while modern lithium-ion batteries have a [latex]k[/latex] much closer to 1 (e.g., 1.05), indicating their superior performance under heavy loads.

UNESCO Nomenclature: 3305
– Electrical engineering

Typ

Abstract System

Disruption

Substantial

Verwendung

Widespread Use

Precursors

  • Ohm’s Law and the concept of internal resistance
  • Development of practical, high-capacity batteries like the lead-acid cell
  • The need for predictable performance in industrial applications like electric traction and lighting
  • Experimental work on battery discharge curves

Anwendungen

  • battery management systems (BMS) for accurate state-of-charge estimation
  • designing and sizing battery banks for off-grid solar systems
  • predicting the range of electric vehicles under different driving conditions
  • modeling battery performance in uninterruptible power supplies (UPS)

Patente:

DAS

Potential Innovations Ideas

!Professionals (100% free) Mitgliedschaft erforderlich

Sie müssen ein Professionals (100% free) Mitglied sein, um auf diesen Inhalt zugreifen zu können.

Jetzt teilnehmen

Sie sind bereits Mitglied? Hier einloggen
Related to: Peukert’s law, battery capacity, discharge rate, state of charge, battery management system, empirical formula, C-rate, internal resistance

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert

VERFÜGBAR FÜR NEUE HERAUSFORDERUNGEN
Mechanical Engineer, Project, Process Engineering or R&D Manager
Effektive Produktentwicklung

Kurzfristig für eine neue Herausforderung verfügbar.
Kontaktieren Sie mich auf LinkedIn
Plastic metal electronics integration, Design-to-cost, GMP, Ergonomics, Medium to high-volume devices & consumables, Lean Manufacturing, Regulated industries, CE & FDA, CAD, Solidworks, Lean Sigma Black Belt, medical ISO 13485

Wir suchen einen neuen Sponsor

 

Ihr Unternehmen oder Ihre Institution beschäftigt sich mit Technik, Wissenschaft oder Forschung?
> Senden Sie uns eine Nachricht <

Erhalten Sie alle neuen Artikel
Kostenlos, kein Spam, E-Mail wird nicht verteilt oder weiterverkauft

oder Sie können eine kostenlose Vollmitgliedschaft erwerben, um auf alle eingeschränkten Inhalte zuzugreifen >Hier<

Historical Context

(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)

Related Invention, Innovation & Technical Principles

Nach oben scrollen

Das gefällt dir vielleicht auch