A solar cell’s core is a p-n junction, an interface between p-type and n-type semiconductor materials. This junction creates a built-in electric field in a depletion region. When photons with sufficient energy strike the semiconductor, they create electron-hole pairs. The electric field separates these charge carriers, driving electrons to the n-side and holes to the p-side, generating a voltage.
The P-N Junction Photovoltaic Principle
- Russell Ohl
The p-n junction is the fundamental building block of most solar cells. It is formed by joining a p-type semiconductor, which has an excess of holes (positive charge carriers), with an n-type semiconductor, which has an excess of electrons (negative charge carriers). This is typically achieved by doping a single semiconductor crystal, like silicon, with different impurities on each side.
At the interface, electrons from the n-side diffuse into the p-side, and holes from the p-side diffuse into the n-side. This diffusion process doesn’t continue indefinitely. As electrons and holes cross the junction, they recombine, leaving behind ionized donor atoms on the n-side and ionized acceptor atoms on the p-side. This creates a region depleted of free charge carriers, known as the depletion region or space charge region. The fixed, ionized atoms in this region establish a strong, static electric field pointing from the n-side to the p-side.
This built-in electric field is crucial for the photovoltaic effect. When a photon with energy greater than the semiconductor’s bandgap energy ([latex]E_g[/latex]) is absorbed, it excites an electron from the valence band to the conduction band, creating an electron-hole pair. If this pair is generated within the depletion region or close enough to diffuse into it, the electric field acts on them. The field sweeps the electron towards the n-side and the hole towards the p-side. This separation of charge prevents immediate recombination and creates an accumulation of positive charge on the p-side and negative charge on the n-side. This charge separation across the device results in a photovoltage, which can drive a current through an external circuit, thus converting light energy into electrical energy.
Typ
Disruption
Verwendung
Precursors
- discovery of the photoelectric effect by heinrich hertz (1887)
- einstein’s explanation of the photoelectric effect (1905)
- development of semiconductor physics and doping techniques
- discovery of rectification at a metal-semiconductor contact (1874)
Anwendungen
- photovoltaic solar panels
- photodiodes
- light-emitting diodes (leds)
- semiconductor transistors
Patente:
- US2402662A
Potential Innovations Ideas
!Professionals (100% free) Mitgliedschaft erforderlich
Sie müssen ein Professionals (100% free) Mitglied sein, um auf diesen Inhalt zugreifen zu können.
VERFÜGBAR FÜR NEUE HERAUSFORDERUNGEN
Mechanical Engineer, Project, Process Engineering or R&D Manager
Kurzfristig für eine neue Herausforderung verfügbar.
Kontaktieren Sie mich auf LinkedIn
Plastic metal electronics integration, Design-to-cost, GMP, Ergonomics, Medium to high-volume devices & consumables, Lean Manufacturing, Regulated industries, CE & FDA, CAD, Solidworks, Lean Sigma Black Belt, medical ISO 13485
Wir suchen einen neuen Sponsor
Ihr Unternehmen oder Ihre Institution beschäftigt sich mit Technik, Wissenschaft oder Forschung?
> Senden Sie uns eine Nachricht <
Erhalten Sie alle neuen Artikel
Kostenlos, kein Spam, E-Mail wird nicht verteilt oder weiterverkauft
oder Sie können eine kostenlose Vollmitgliedschaft erwerben, um auf alle eingeschränkten Inhalte zuzugreifen >Hier<
Historical Context
The P-N Junction Photovoltaic Principle
(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)
Related Invention, Innovation & Technical Principles