For a general three-dimensional state of stress, the analysis is represented by three Mohr’s circles. These circles are drawn in the [latex]\sigma_n – \tau_n[/latex] plane using the three principal stresses ([latex]\sigma_1, \sigma_2, \sigma_3[/latex]) as diameters. The largest circle, defined by [latex]\sigma_1[/latex] and [latex]\sigma_3[/latex], encloses the other two and determines the absolute maximum shear stress, [latex]\tau_{abs max} = (\sigma_1 – \sigma_3)/2[/latex].
Mohr’s Circle for 3D Stress
- Christian Otto Mohr

While the 2D Mohr’s circle is common, real-world Stress states are three-dimensional. To analyze a 3D stress state, one first determines the three principal stresses, [latex]\sigma_1 \ge \sigma_2 \ge \sigma_3[/latex], which are the eigenvalues of the 3×3 Cauchy stress tensor. These three values are then used to construct three separate Mohr’s circles. The first circle is drawn between [latex]\sigma_1[/latex] and [latex]\sigma_2[/latex], the second between [latex]\sigma_2[/latex] and [latex]\sigma_3[/latex], and the third, largest circle between [latex]\sigma_1[/latex] and [latex]\sigma_3[/latex].
The stress state ([latex]\sigma_n, \tau_n[/latex]) for any arbitrarily oriented plane at the point will lie within the shaded area bounded by these three circles. A crucial insight from this 3D representation is the determination of the absolute maximum shear stress. Unlike the 2D case where the maximum in-plane shear is the radius, the absolute maximum shear stress for a 3D state is always the radius of the largest circle, given by [latex]\tau_{abs max} = R_{max} = (\sigma_{max} – \sigma_{min})/2 = (\sigma_1 – \sigma_3)/2[/latex]. This value is fundamental for applying failure criteria like the Tresca yield criterion in a general 3D context, as it represents the true maximum shear stress experienced by the material at that point.
Typ
Unterbrechung
Verwendung
Vorläufersubstanzen
- Cauchy’s 3D stress tensor formulation
- Eigenvalue analysis for 3×3 matrices
- Mohr’s original 2D circle concept
- Lamé’s stress ellipsoid concept
Anwendungen
Patente:
Mögliche Innovationsideen
!Professionals (100% free) Mitgliedschaft erforderlich
Sie müssen ein Professionals (100% free) Mitglied sein, um auf diesen Inhalt zugreifen zu können.
VERFÜGBAR FÜR NEUE HERAUSFORDERUNGEN
Maschinenbauingenieur, Projekt-, Verfahrenstechnik- oder F&E-Manager
Kurzfristig für eine neue Herausforderung verfügbar.
Kontaktieren Sie mich auf LinkedIn
Integration von Kunststoff-Metall-Elektronik, Design-to-Cost, GMP, Ergonomie, Geräte und Verbrauchsmaterialien in mittleren bis hohen Stückzahlen, Lean Manufacturing, regulierte Branchen, CE und FDA, CAD, Solidworks, Lean Sigma Black Belt, medizinische ISO 13485
Wir suchen einen neuen Sponsor
Ihr Unternehmen oder Ihre Institution beschäftigt sich mit Technik, Wissenschaft oder Forschung?
> Senden Sie uns eine Nachricht <
Erhalten Sie alle neuen Artikel
Kostenlos, kein Spam, E-Mail wird nicht verteilt oder weiterverkauft
oder Sie können eine kostenlose Vollmitgliedschaft erwerben, um auf alle eingeschränkten Inhalte zuzugreifen >Hier<
Historischer Kontext
Mohr’s Circle for 3D Stress
(wenn das Datum nicht bekannt oder nicht relevant ist, z. B. "Strömungsmechanik", wird eine gerundete Schätzung des bemerkenswerten Erscheinens angegeben)
Verwandte Erfindungen, Innovationen und technische Prinzipien