The Mach number (M) is a dimensionless quantity representing the ratio of flow velocity past a boundary to the local speed of sound: [latex]M = v/a[/latex], where v is the flow velocity and a is the speed of sound. It is the primary indicator of compressibility effects. As Mach number approaches and exceeds 1, the density of the air changes significantly, altering aerodynamic forces.
Mach Number and Compressibility
- Ernst Mach
The Mach number is the most important parameter when analyzing high-speed, compressible flows. Unlike low-speed (incompressible) flow where air density is assumed constant, at high speeds, this assumption breaks down. The Mach number categorizes flow into distinct regimes: subsonic (M < 1), transonic (0.8 < M 1), and hypersonic (M > 5). Each regime has unique physical characteristics.
In the subsonic regime, air behaves much like an incompressible fluid, and pressure disturbances propagate away from the aircraft in all directions. As an aircraft approaches Mach 1 (the transonic regime), air ahead of it has less ‘warning’ of its approach. Airflow begins to reach sonic speed in some areas, like the curved top of the wing, even if the aircraft itself is subsonic. This creates localized shock waves, which are abrupt discontinuities in pressure, density, and temperature. These shocks can cause a dramatic increase in drag (wave drag) and a loss of lift, a phenomenon known as the sound barrier.
Once an aircraft exceeds Mach 1 (supersonic flight), it outruns its own pressure waves. These waves coalesce to form a powerful shock wave, typically a cone-shaped one at the nose and tail, which is heard on the ground as a sonic boom. In supersonic and hypersonic flight, the physics is dominated by these shock waves. Aerodynamic design shifts from smooth, rounded shapes to sharp leading edges to manage the intense heating and forces associated with strong shocks. The study of compressibility is therefore essential for any vehicle designed to travel near or faster than the speed of sound.
Typ
Disruption
Verwendung
Precursors
- Studies on the speed of sound by various scientists including Pierre Gassendi and Isaac Newton
- Doppler effect, which describes changes in wave frequency with motion
- Early ballistic studies on projectiles moving faster than sound
Anwendungen
- design of supersonic and hypersonic aircraft like jets and rockets
- understanding sonic booms
- design of high-speed turbine blades in jet engines
- ballistics and projectile design
- nozzles for rocket engines (de laval nozzle)
Patente:
Potential Innovations Ideas
!Professionals (100% free) Mitgliedschaft erforderlich
Sie müssen ein Professionals (100% free) Mitglied sein, um auf diesen Inhalt zugreifen zu können.
VERFÜGBAR FÜR NEUE HERAUSFORDERUNGEN
Maschinenbauingenieur, Projekt- oder F&E-Manager
Kurzfristig für eine neue Herausforderung verfügbar.
Kontaktieren Sie mich auf LinkedIn
Integration von Kunststoff-Metall-Elektronik, Design-to-Cost, GMP, Ergonomie, Geräte und Verbrauchsmaterialien in mittleren bis hohen Stückzahlen, regulierte Branchen, CE und FDA, CAD, Solidworks, Lean Sigma Black Belt, medizinische ISO 13485
Wir suchen einen neuen Sponsor
Ihr Unternehmen oder Ihre Institution beschäftigt sich mit Technik, Wissenschaft oder Forschung?
> Senden Sie uns eine Nachricht <
Erhalten Sie alle neuen Artikel
Kostenlos, kein Spam, E-Mail wird nicht verteilt oder weiterverkauft
oder Sie können eine kostenlose Vollmitgliedschaft erwerben, um auf alle eingeschränkten Inhalte zuzugreifen >Hier<
Related Invention, Innovation & Technical Principles