The Finite Element Method (FEM) is a powerful numerical technique for solving complex engineering and physics problems described by partial differential equations. It works by discretizing a continuous domain into a set of smaller, simpler subdomains called ‘finite elements’. This allows for the approximate numerical solution of problems in structural analysis, heat transfer, fluid flow, and electromagnetism.
Finite Element Method
- Richard Courant
- Alexander Hrennikoff
- Olgierd Zienkiewicz
The FEM process begins with the ‘discretization’ of the problem domain into a mesh of finite elements (e.g., triangles or quadrilaterals in 2D, tetrahedra or hexahedra in 3D). Within each element, the unknown field variable (e.g., displacement) is approximated by simple polynomial functions, known as shape functions. The values of the field at the element nodes become the new unknowns of the problem.
A system of algebraic equations for the entire domain is derived, typically using a variational principle like the principle of minimum potential energy or a weighted residual Verfahren like the Galerkin method. This process generates an ‘element stiffness matrix’ [latex][k_e][/latex] for each element, which relates the nodal forces [latex]\{f_e\}[/latex] to the nodal displacements [latex]\{u_e\}[/latex] via [latex][k_e] \{u_e\} = \{f_e\}[/latex]. These individual element matrices are then systematically combined (‘assembled’) into a single global stiffness matrix [latex][K][/latex] for the entire structure. After applying known boundary conditions (forces and constraints), the resulting large system of linear equations, [latex][K] \{U\} = \{F\}[/latex], is solved numerically for the unknown global displacement vector [latex]\{U\}[/latex]. Once the nodal displacements are known, other quantities like strains and stresses can be calculated for each element.
Typ
Disruption
Verwendung
Precursors
- Calculus of variations
- Matrix algebra
- The advent of digital computers
- Theory of elasticity and continuum Mechanik
- Rayleigh-Ritz method for approximating solutions
Anwendungen
- structural analysis Software (e.g., ansys, abaqus, nastran)
- automotive crash simulations
- aerospace component design and stress analysis
- thermal analysis of electronic components
- biomechanical simulation of implants and tissues
Patente:
Potential Innovations Ideas
!Professionals (100% free) Mitgliedschaft erforderlich
Sie müssen ein Professionals (100% free) Mitglied sein, um auf diesen Inhalt zugreifen zu können.
VERFÜGBAR FÜR NEUE HERAUSFORDERUNGEN
Maschinenbauingenieur, Projekt- oder F&E-Manager
Kurzfristig für eine neue Herausforderung verfügbar.
Kontaktieren Sie mich auf LinkedIn
Integration von Kunststoff-Metall-Elektronik, Design-to-Cost, GMP, Ergonomie, Geräte und Verbrauchsmaterialien in mittleren bis hohen Stückzahlen, regulierte Branchen, CE und FDA, CAD, Solidworks, Lean Sigma Black Belt, medizinische ISO 13485
Wir suchen einen neuen Sponsor
Ihr Unternehmen oder Ihre Institution beschäftigt sich mit Technik, Wissenschaft oder Forschung?
> Senden Sie uns eine Nachricht <
Erhalten Sie alle neuen Artikel
Kostenlos, kein Spam, E-Mail wird nicht verteilt oder weiterverkauft
oder Sie können eine kostenlose Vollmitgliedschaft erwerben, um auf alle eingeschränkten Inhalte zuzugreifen >Hier<
Related Invention, Innovation & Technical Principles