Heim » Euler’s Polyhedron Formula

Euler’s Polyhedron Formula

1750
  • Leonhard Euler

A fundamental theorem in topology and geometry stating that for any convex polyhedron, the number of vertices (V), edges (E), and faces (F) are related by the formula [latex]V – E + F = 2[/latex]. This value, 2, is the Euler characteristic of a sphere, revealing a deep topological property independent of the polyhedron’s specific shape.

Euler’s polyhedron formula, [latex]V – E + F = 2[/latex], establishes a remarkable relationship for the vertices, edges, and faces of any simple polyhedron (one that does not intersect itself and has no holes). This formula is significant because it is a topological invariant, meaning it depends on the fundamental shape of the object rather than its specific geometric properties like size or angles. The constant ‘2’ is known as the Euler characteristic for any surface that is topologically equivalent to a sphere. For instance, a cube has 8 vertices, 12 edges, and 6 faces, so [latex]8 – 12 + 6 = 2[/latex]. A tetrahedron has 4 vertices, 6 edges, and 4 faces, so [latex]4 – 6 + 4 = 2[/latex].

The proof of this formula can be approached in several ways. One intuitive Verfahren involves “flattening” the polyhedron onto a plane. Imagine removing one face and stretching the remaining structure out. This creates a planar graph. The formula can then be proven for this graph using induction. Starting with a single triangle ([latex]V=3, E=3, F=1[/latex], plus the outer region as a face, so [latex]F=2[/latex], giving [latex]3-3+2=2[/latex]), one can show that adding new vertices or edges in a way that maintains the planar structure preserves the [latex]V-E+F=1[/latex] relationship for the internal faces. The formula’s discovery is attributed to Leonhard Euler in 1750, although there is evidence that René Descartes had discovered a similar result a century earlier, which was lost. The formula was later generalized by L’Huilier and others for polyhedra with holes (tori), where the formula becomes [latex]V – E + F = 2 – 2g[/latex], with ‘g’ being the genus (number of holes).

This generalization connects solid geometry to the broader field of topology, which studies properties of spaces that are preserved under continuous deformations. The Euler characteristic is a fundamental tool in algebraic topology for classifying surfaces and higher-dimensional manifolds. Its application extends far beyond pure mathematics, influencing fields like computer graphics, where it helps validate the integrity of 3D models (meshes), and in chemistry, where it relates to the structure of fullerenes and other complex molecules.

UNESCO Nomenclature: 1204
– Geometry

Typ

Abstract System

Disruption

Foundational

Verwendung

Widespread Use

Precursors

  • Euclidean geometry’s study of polyhedra
  • Early work on graph theory and networks
  • René Descartes’s lost manuscript on polyhedra (c. 1630)

Anwendungen

  • computer graphics for mesh simplification
  • network design and analysis
  • topology and graph theory
  • crystallography for classifying crystal structures
  • architectural design for geodesic domes

Patente:

DAS

Potential Innovations Ideas

!Professionals (100% free) Mitgliedschaft erforderlich

Sie müssen ein Professionals (100% free) Mitglied sein, um auf diesen Inhalt zugreifen zu können.

Jetzt teilnehmen

Sie sind bereits Mitglied? Hier einloggen
Related to: euler characteristic, polyhedron, topology, graph theory, vertices, edges, faces, solid geometry

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert

VERFÜGBAR FÜR NEUE HERAUSFORDERUNGEN
Maschinenbauingenieur, Projekt- oder F&E-Manager
Effektive Produktentwicklung

Kurzfristig für eine neue Herausforderung verfügbar.
Kontaktieren Sie mich auf LinkedIn
Integration von Kunststoff-Metall-Elektronik, Design-to-Cost, GMP, Ergonomie, Geräte und Verbrauchsmaterialien in mittleren bis hohen Stückzahlen, regulierte Branchen, CE und FDA, CAD, Solidworks, Lean Sigma Black Belt, medizinische ISO 13485

Wir suchen einen neuen Sponsor

 

Ihr Unternehmen oder Ihre Institution beschäftigt sich mit Technik, Wissenschaft oder Forschung?
> Senden Sie uns eine Nachricht <

Erhalten Sie alle neuen Artikel
Kostenlos, kein Spam, E-Mail wird nicht verteilt oder weiterverkauft

oder Sie können eine kostenlose Vollmitgliedschaft erwerben, um auf alle eingeschränkten Inhalte zuzugreifen >Hier<

Historical Context

(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)

Related Invention, Innovation & Technical Principles

Nach oben scrollen

Das gefällt dir vielleicht auch