The Euler characteristic is a topological invariant, a number that describes a topological space’s structure or shape regardless of how it is bent. For polyhedra, it is defined by the formula [latex]\chi = V – E + F[/latex], where V, E, and F are the number of vertices, edges, and faces, respectively. For a sphere, [latex]\chi = 2[/latex], while for a torus, [latex]\chi = 0[/latex].
Euler Characteristic
- Leonhard Euler
Euler’s original formula was stated for convex polyhedra. For any such shape, the sum of vertices minus edges plus faces is always 2. This discovery was one of the first examples of a topological property. The concept was later generalized to any topological space. For a finite CW-complex, the Euler characteristic can be defined as the alternating sum of the number of cells of each dimension: [latex]\chi = k_0 – k_1 + k_2 – \dots[/latex], where [latex]k_n[/latex] is the number of n-dimensional cells. This generalizes the V-E+F formula. A more profound generalization in algebraic topology defines the Euler characteristic in terms of homology groups. Specifically, it is the alternating sum of the Betti numbers [latex]b_n[/latex] (the rank of the n-th homology group): [latex]\chi = \sum_{n=0}^{\infty} (-1)^n b_n[/latex]. This definition makes it clear that the Euler characteristic is a topological invariant, as homology groups are themselves topological invariants. This number provides a powerful, yet simple, tool to distinguish between different topological surfaces. For example, any surface homeomorphic to a sphere will have [latex]\chi=2[/latex], and any surface homeomorphic to a torus will have [latex]\chi=0[/latex].
Typ
Disruption
Verwendung
Precursors
- Ancient Greek geometry on Platonic solids
- René Descartes’s unpublished work on polyhedra (Descartes’ theorem on total angular defect)
- Early work in graph theory
Anwendungen
- computer graphics for mesh simplification
- graph theory
- algebraic topology (as the alternating sum of Betti numbers)
- cartography (map coloring problems)
- cosmology (studying the shape of the universe)
Patente:
Potential Innovations Ideas
!Professionals (100% free) Mitgliedschaft erforderlich
Sie müssen ein Professionals (100% free) Mitglied sein, um auf diesen Inhalt zugreifen zu können.
VERFÜGBAR FÜR NEUE HERAUSFORDERUNGEN
Maschinenbauingenieur, Projekt- oder F&E-Manager
Kurzfristig für eine neue Herausforderung verfügbar.
Kontaktieren Sie mich auf LinkedIn
Integration von Kunststoff-Metall-Elektronik, Design-to-Cost, GMP, Ergonomie, Geräte und Verbrauchsmaterialien in mittleren bis hohen Stückzahlen, regulierte Branchen, CE und FDA, CAD, Solidworks, Lean Sigma Black Belt, medizinische ISO 13485
Wir suchen einen neuen Sponsor
Ihr Unternehmen oder Ihre Institution beschäftigt sich mit Technik, Wissenschaft oder Forschung?
> Senden Sie uns eine Nachricht <
Erhalten Sie alle neuen Artikel
Kostenlos, kein Spam, E-Mail wird nicht verteilt oder weiterverkauft
oder Sie können eine kostenlose Vollmitgliedschaft erwerben, um auf alle eingeschränkten Inhalte zuzugreifen >Hier<
Historical Context
Euler Characteristic
(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)
Related Invention, Innovation & Technical Principles