The Cauchy stress tensor, denoted [latex]\boldsymbol{\sigma}[/latex], is a second-order tensor that completely defines the state of stress at a point inside a material. It relates the traction vector (force per unit area) [latex]\mathbf{T}[/latex] on any surface passing through that point to the surface’s normal vector [latex]\mathbf{n}[/latex] via the linear relationship [latex]\mathbf{T} = \boldsymbol{\sigma} \cdot \mathbf{n}[/latex].
Cauchy Stress Tensor
- Augustin-Louis Cauchy
The Cauchy stress tensor provides a complete description of the internal forces acting within a deformable body. Imagine an infinitesimal cube of material at a point P. Forces are exerted on each face of this cube by the surrounding material. The stress tensor [latex]\boldsymbol{\sigma}[/latex] is a 3×3 matrix whose components [latex]\sigma_{ij}[/latex] represent the stress on the i-th face in the j-th direction. The diagonal components ([latex]\sigma_{11}, \sigma_{22}, \sigma_{33}[/latex]) are normal stresses, representing pulling (tension) or pushing (compression) perpendicular to the face. The off-diagonal components ([latex]\sigma_{12}, \sigma_{23},[/latex] etc.) are shear stresses, representing forces acting parallel to the face.
A key result, known as Cauchy’s stress theorem, states that knowledge of the stress vectors on three mutually perpendicular planes is sufficient to determine the stress vector on any other plane passing through that point. This is encapsulated in the formula [latex]\mathbf{T}^{(mathbf{n})} = \boldsymbol{\sigma}^T \mathbf{n}[/latex]. Furthermore, the conservation of angular momentum requires the stress tensor to be symmetric ([latex]\sigma_{ij} = \sigma_{ji}[/latex]), which reduces the number of independent components from nine to six. This tensor is fundamental because it allows engineers to analyze the stress state at any point within an object, regardless of its orientation, and to predict whether the material will yield or fracture under applied loads by comparing the stress state to the material’s strength properties.
Typ
Disruption
Verwendung
Precursors
Anwendungen
- structural analysis of buildings, bridges, and aircraft to predict failure
- geomechanics for analyzing stresses in rock and soil for tunneling and foundation design
- materials science for understanding material failure mechanisms like fracture and fatigue
- biomechanics for calculating stresses in bones and tissues under load
Patente:
Potential Innovations Ideas
!Professionals (100% free) Mitgliedschaft erforderlich
Sie müssen ein Professionals (100% free) Mitglied sein, um auf diesen Inhalt zugreifen zu können.
VERFÜGBAR FÜR NEUE HERAUSFORDERUNGEN
Maschinenbauingenieur, Projekt- oder F&E-Manager
Kurzfristig für eine neue Herausforderung verfügbar.
Kontaktieren Sie mich auf LinkedIn
Integration von Kunststoff-Metall-Elektronik, Design-to-Cost, GMP, Ergonomie, Geräte und Verbrauchsmaterialien in mittleren bis hohen Stückzahlen, regulierte Branchen, CE und FDA, CAD, Solidworks, Lean Sigma Black Belt, medizinische ISO 13485
Wir suchen einen neuen Sponsor
Ihr Unternehmen oder Ihre Institution beschäftigt sich mit Technik, Wissenschaft oder Forschung?
> Senden Sie uns eine Nachricht <
Erhalten Sie alle neuen Artikel
Kostenlos, kein Spam, E-Mail wird nicht verteilt oder weiterverkauft
oder Sie können eine kostenlose Vollmitgliedschaft erwerben, um auf alle eingeschränkten Inhalte zuzugreifen >Hier<
Related Invention, Innovation & Technical Principles