
Online-KI-Tools verändern den Maschinenbau rapide, indem sie die menschlichen Fähigkeiten in den Bereichen Konstruktion und Analyse ergänzen, Herstellungund Wartung. Diese KI-Systeme können riesige Datenmengen verarbeiten, komplexe Muster erkennen und neue Lösungen viel schneller als herkömmliche Methoden entwickeln. So kann KI Sie beispielsweise bei der Optimierung von Konstruktionen im Hinblick auf Leistung und Herstellbarkeit unterstützen, komplexe Simulationen beschleunigen, Materialeigenschaften vorhersagen und eine Vielzahl von Analyseaufgaben automatisieren.
Die nachstehenden Hinweise helfen beispielsweise bei der generativen Konstruktion, beschleunigen Simulationen (FEA/CFD), helfen bei der vorausschauenden Wartung, bei der KI Sensordaten von Maschinen analysiert, um potenzielle Ausfälle zu prognostizieren, ermöglichen eine proaktive Wartung und minimieren Ausfallzeiten, helfen bei der Materialauswahl und vieles mehr.
- Diese Seite ist spezifisch für eine Domain. Bei Bedarf können Sie in unserer > Suchmaschine nach allen Domains und allen Kriterien suchen. AI Prompts Verzeichnis <, gewidmet dem Produktdesign Und Innovation.
- Angesichts der Server-Ressourcen und des Zeitaufwands sind die Eingabeaufforderungen selbst nur registrierten Mitgliedern vorbehalten und unten nicht sichtbar, wenn Sie nicht angemeldet sind. Sie können sich registrieren, 100% kostenlos:
Mitgliedschaft erforderlich
Sie müssen Mitglied sein, um auf diesen Inhalt zugreifen zu können.
- Literaturübersicht und Trendanalyse
- Maschinenbau
AI Aufforderung an Literaturüberblick zu materiellen Fortschritten
- Additive Fertigung, Verbundwerkstoffe, Herstellung, Materialien, Maschinenbau, Mechanische Eigenschaften, Produktentwicklung, Forschung und Entwicklung, Nachhaltigkeitspraktiken
Fasst die jüngsten Fortschritte (in den letzten N Jahren) in einer bestimmten Werkstoffklasse zusammen und konzentriert sich auf deren Anwendung in einem bestimmten Bereich des Maschinenbaus. Es werden wichtige Forschungstrends und bahnbrechende Veröffentlichungen identifiziert. Die Ausgabe ist eine Zusammenfassung in Markdown-Form.
Ausgabe:
- Markdown
- erfordert Live-Internet
- Felder: {material_class_name} {application_area_focus} {Zeit_Zeitraum_Jahre}
Act as a Materials Science Research Analyst specializing in Mechanical Engineering applications.
Your TASK is to conduct a concise literature review summarizing recent advancements in `{material_class_name}` with a focus on their application in `{application_area_focus}` over the past `{time_period_years}` years.
You MUST use live internet access to gather information from scholarly articles
conference proceedings
and reputable technical sources.
**1. Search Strategy and Information Gathering**:
* Define search keywords based on `{material_class_name}` (e.g.
'High Entropy Alloys'
'Self-healing Polymers'
'Metal Matrix Composites'
'Biodegradable Magnesium Alloys')
`{application_area_focus}` (e.g.
'aerospace structural components'
'biomedical implants'
'automotive lightweighting'
'tribological coatings')
and terms like 'advancements'
'recent research'
'trends'
'review'.
* Query academic databases (like Google Scholar
Scopus
Web of Science if accessible through your tools) and leading publisher sites (e.g.
Elsevier
Springer
Wiley
Nature
Science).
* Filter results to the last `{time_period_years}` years.
* Prioritize review articles
highly cited research papers
and significant breakthrough reports.
**2. Analysis and Synthesis**:
* **Identify Key Advancements**: What are the most significant improvements or new discoveries related to `{material_class_name}` in the context of `{application_area_focus}`? This could include:
* New processing or manufacturing techniques.
* Improved mechanical properties (strength
toughness
fatigue resistance
wear resistance
etc.).
* Enhanced functional properties (e.g.
corrosion resistance
thermal stability
biocompatibility
self-healing capabilities).
* Novel compositions or microstructures.
* Successful application examples or case studies.
* **Identify Research Trends**: What are the current hot topics or directions in research for this material-application combination?
* **Key Researchers/Institutions (Optional
if prominent)**: Briefly mention any leading research groups if they consistently appear.
* **Seminal Publications (2-3 examples)**: Cite (author
year
title
journal if possible
or just a descriptive reference) a few highly impactful papers from the review period that exemplify these advancements.
**3. Output Format (Markdown)**:
* **Title**: Literature Review: Recent Advancements in `{material_class_name}` for `{application_area_focus}` (Last `{time_period_years}` Years).
* **1. Introduction**: Briefly introduce `{material_class_name}` and its importance in `{application_area_focus}`.
* **2. Key Advancements**: Use subheadings for different categories of advancements if logical
or a narrative style. Be specific and provide examples.
* **3. Current Research Trends**: Summarize the dominant research directions.
* **4. Notable Publications**: List 2-3 key papers as described above.
* **5. Challenges and Future Outlook**: Briefly discuss any remaining challenges or potential future developments.
* **6. Sources Consulted (General Statement)**: Indicate that the review is based on publicly available scholarly literature and state if specific databases were primarily used if known by your tools.
**IMPORTANT**: The summary should be concise yet informative
targeted at a mechanical engineer looking for an update on the topic. Ensure information is up-to-date by leveraging live internet search. Properly attribute information conceptually if not citing formally (e.g.
'Research indicates...'
'Studies have shown...').
- Am besten geeignet für: Maschinenbauingenieure erhalten einen zusammenfassenden Überblick über die jüngsten Fortschritte, Forschungstrends und Schlüsselpublikationen in einer bestimmten Werkstoffklasse, die für ihren Anwendungsbereich relevant ist.
- Literaturübersicht und Trendanalyse
- Maschinenbau
AI Aufforderung an Tool zur Identifizierung von Schlüsselpersonen in der Forschung
- Additive Fertigung, Design für additive Fertigung (DfAM), Technische Grundlagen, Maschinenbau, Produktentwicklung, Forschung und Entwicklung, Robotik, Nachhaltigkeitspraktiken
Identifiziert und listet wichtige Forscher oder Forschungsgruppen und die ihnen angeschlossenen Institutionen auf, die in einem Nischenthema des Maschinenbaus sehr aktiv sind. Dies hilft bei der Suche nach Experten für die Zusammenarbeit oder relevanter Literatur. Die Ausgabe ist eine CSV-Liste.
Ausgabe:
- CSV
- erfordert Live-Internet
- Felder: {niche_mechanical_engineering_topic} {number_of_results_desired}
Act as a Research Intelligence Analyst specializing in mapping expertise in engineering fields.
Your TASK is to identify key researchers (or research groups) and their institutions who are highly active and influential in the `{niche_mechanical_engineering_topic}`. You should aim to provide `{number_of_results_desired}` distinct entries.
You MUST use live internet access to query academic search engines
university research portals
and publication databases.
**1. Search and Identification Strategy**:
* Formulate targeted search queries using keywords derived from `{niche_mechanical_engineering_topic}` (e.g.
if topic is 'triboelectric nanogenerators for vibration energy harvesting'
use these terms plus 'researcher'
'professor'
'publications'
'lab').
* Utilize academic search engines (Google Scholar
Semantic Scholar
etc.) and potentially specific university/research institution websites.
* Look for indicators of significant contribution and activity:
* High number of relevant publications in reputable journals/conferences.
* High citation counts for relevant work.
* Principal Investigator (PI) status on relevant grants or projects.
* Keynote speaker invitations or leadership roles in relevant conferences/societies.
* Patents filed in the area.
* Prioritize individuals who have published consistently or significantly on the topic in recent years (e.g.
last 5-10 years).
**2. Data Extraction and Formatting**:
* For each identified key researcher/group
try to find:
* Full Name of the lead researcher (if an individual) or Research Group Name.
* Primary Affiliated Institution (University
Research Institute).
* Department or Lab (if readily available).
* A key publication or a very brief summary of their focus within the `{niche_mechanical_engineering_topic}` (e.g.
'Focus on material development for TENGs' or a specific highly cited paper title).
* (Optional but helpful) A URL to their official profile or lab page if easily found.
**3. Output Format (CSV)**:
* You MUST return the results as a single CSV string.
* The CSV header row MUST be: `Rank
Researcher_Or_Group_Name
Affiliated_Institution
Department_Or_Lab
Focus_Or_Key_Publication
Profile_URL`
* Populate the table with up to `{number_of_results_desired}` entries
ranked roughly by perceived influence or activity if possible (this is subjective
so best effort is fine
or simply list them). If ranking is hard
'Rank' can be a simple serial number.
* If some information (e.g.
Department
Profile_URL) is not easily found
leave that cell blank in the CSV row but maintain comma separators.
Example of a CSV row:
`1
Prof. John Doe
Massachusetts Institute of Technology
Dept. of Mechanical Engineering
Pioneering work on XYZ sensors
http://mit.edu/johndoe`
**IMPORTANT**: The quality of results depends on effective searching and interpretation of academic output. Prioritize relevance to the `{niche_mechanical_engineering_topic}`. State that the list is based on publicly available information accessed at the time of the query.
- Am besten geeignet für: Unterstützung von Maschinenbauingenieuren bei der Suche nach führenden Forschern und Institutionen in Nischenthemen für die Zusammenarbeit mit Experten oder die Suche nach Literatur.
- Literaturübersicht und Trendanalyse
- Maschinenbau
AI Aufforderung an Entwurfsmethodik Entwicklungsanalyse
- Agile Methodik, Kontinuierliche Verbesserung, Design für additive Fertigung (DfAM), Entwurf für Six Sigma (DfSS), Design Denken, Schlanke Fertigung, Produktentwicklung, Qualitätsmanagement
Analysiert und skizziert die historische Entwicklung, die wichtigsten Meilensteine und die aktuellen Trends einer bestimmten mechanischen Konstruktionsmethodik oder -philosophie. Dies hilft den Ingenieuren, den Kontext und die Fortschritte bei den Konstruktionsansätzen zu verstehen. Das Ergebnis ist ein Bericht oder eine Zeitleiste in Stichpunkten.
Ausgabe:
- Markdown
- erfordert Live-Internet
- Felder: {design_methodology_name} {approximate_start_year_or_era}
Act as an Engineering Design Historian and Theorist.
Your TASK is to analyze and outline the evolution of the mechanical design methodology known as `{design_methodology_name}`
starting from approximately `{approximate_start_year_or_era}` to the present day.
You should use live internet access to research its history
key proponents
seminal publications/tools
and current trends.
**1. Research and Information Gathering**:
* Use `{design_methodology_name}` (e.g.
'Design for Six Sigma (DFSS)'
'Axiomatic Design'
'TRIZ (Theory of Inventive Problem Solving)'
'Robust Design (Taguchi Methods)'
'Topology Optimization') and terms like 'history'
'evolution'
'key developments'
'timeline'
'impact' in your searches.
* Consult scholarly articles
books
historical accounts
and reputable engineering resources.
* Identify:
* Origins and foundational concepts/principles.
* Key individuals or organizations that developed or promoted the methodology.
* Significant milestones
publications
or software tools that marked turning points.
* How the methodology has been adapted or integrated with other approaches over time.
* Its impact on mechanical engineering practice.
* Current trends
criticisms
or areas of ongoing development related to it.
**2. Structuring the Analysis (Output as Markdown)**:
You can choose a chronological narrative or a timeline-based structure. Ensure the following aspects are covered:
* **Title**: The Evolution of `{design_methodology_name}` in Mechanical Engineering.
* **1. Introduction**: Briefly define `{design_methodology_name}` and state its core objectives.
* **2. Origins and Early Development (around `{approximate_start_year_or_era}` and following period)**:
* Describe the context or problems that led to its development.
* Mention key founders/pioneers and their initial contributions.
* **3. Key Milestones and Expansion**:
* Detail significant developments
theoretical refinements
or practical breakthroughs in chronological order or by thematic progression.
* Mention any influential books
papers
or case studies that popularized or validated the methodology.
* Discuss the development of associated tools or software
if applicable.
* **4. Mainstream Adoption and Impact**:
* When and how did it gain wider acceptance in industry and academia?
* What has been its primary impact on how mechanical design is approached or taught?
* **5. Current Status
Trends
and Criticisms**:
* How is `{design_methodology_name}` viewed or used today?
* Are there new interpretations
integrations with digital tools (e.g.
AI
MBSE)
or extensions of the methodology?
* Are there any common criticisms or limitations discussed in the literature?
* **6. Future Outlook**:
* Brief speculation on its future trajectory or relevance.
**IMPORTANT**: The analysis should be insightful and provide a good historical overview for a mechanical engineer. Focus on conceptual evolution and practical impact. Ensure information is corroborated from reliable sources accessed via the internet.
- Am besten geeignet für: Maschinenbauingenieure erhalten einen historischen Überblick und ein aktuelles Verständnis dafür, wie sich bestimmte Konstruktionsmethoden entwickelt und auf das Fachgebiet ausgewirkt haben.
- Literaturübersicht und Trendanalyse
- Maschinenbau
AI Aufforderung an Identifizierung von Wissenslücken anhand von Abstracts
- Additive Fertigung, Design für additive Fertigung (DfAM), Innovation, Maschinenbau, Prozessverbesserung, Qualitätsmanagement, Forschung und Entwicklung, Nachhaltigkeitspraktiken
Identifiziert potenzielle Wissenslücken oder Bereiche für künftige Forschung in einem bestimmten Bereich des Maschinenbaus durch die Analyse einer Sammlung aktueller Forschungszusammenfassungen. Dies hilft den Forschern, neue Forschungsfragen zu identifizieren. Die Ausgabe ist eine Markdown-Liste.
Ausgabe:
- Markdown
- erfordert kein Live-Internet
- Felder: {research_area_description_text} {Sammlung_von_Abstracts_text}
Act as a Research Strategist with expertise in identifying emerging research fronts in Mechanical Engineering.
Your TASK is to analyze a `{collection_of_abstracts_text}` from recent research within the `{research_area_description_text}` and identify potential knowledge gaps
unanswered questions
or underexplored aspects that could suggest avenues for future research.
**1. Input Processing**:
* `{research_area_description_text}`: A clear description of the specific field or sub-field of mechanical engineering (e.g.
'Additive Manufacturing of Nickel Superalloys for High-Temperature Applications'
'Vibration Damping using Metamaterials in Rotating Machinery'
'Machine Learning for Predictive Maintenance of Hydraulic Systems').
* `{collection_of_abstracts_text}`: A single block of text containing multiple research paper abstracts (e.g.
5-10 abstracts). Each abstract should be clearly demarcated if possible
or just concatenated.
**2. Analysis Methodology**:
* **Thematic Analysis**: Read through all abstracts to understand the main themes
methodologies
and findings being reported in the `{research_area_description_text}`.
* **Identify Common Focus Areas**: What specific problems
materials
techniques
or applications are frequently addressed?
* **Look for Limitations Stated**: Do any abstracts explicitly mention limitations of their own work
or suggest future work? These are direct pointers to gaps.
* **Note Unaddressed Intersections**: Are there logical connections between sub-topics that don't seem to be explored? (e.g.
if one abstract discusses material A for application X
and another discusses material B for application X
is the comparison between A and B for X a gap?).
* **Consider Unexplored Parameters or Conditions**: Are studies typically focused on a narrow range of conditions
materials
or scales? What happens outside these ranges?
* **Methodological Gaps**: Are certain advanced methodologies (e.g.
novel simulation techniques
AI/ML approaches
new experimental methods) not yet widely applied in this area despite potential benefits?
* **Contradictory or Inconclusive Findings**: Do any abstracts present conflicting results or highlight areas where findings are still inconclusive?
* **Assumptions and Simplifications**: What common assumptions are made that might not hold true in all scenarios
suggesting a need for more complex models or experiments?
**3. Output Format (Markdown)**:
* **Title**: Potential Knowledge Gaps and Future Research Directions in `{research_area_description_text}` (Based on Provided Abstracts).
* **1. Overview of Current Research Focus**: Briefly summarize the dominant themes identified in the provided abstracts.
* **2. Identified Potential Knowledge Gaps / Research Questions**: This is the main section. List each potential gap or research question as a clear
concise bullet point. For each point
briefly explain the reasoning based on your analysis of the abstracts. Examples:
* `* **The long-term performance of [Material X] under cyclic thermal loading combined with [Environmental Factor Y] appears underexplored.** While abstracts A and B discuss thermal performance
and abstract C mentions Factor Y independently
their combined effect is not addressed.`
* `* **Comparative analysis of [Technique 1] vs. [Technique 2] for achieving [Specific Outcome Z] is lacking.** Abstracts D and E advocate for different techniques but no direct comparison of efficacy or cost-effectiveness was found.`
* `* **Most studies focus on [Specific Scale/Condition A]
leaving a gap in understanding behavior at [Different Scale/Condition B].** This is evident as abstracts F
G
H all operate within Condition A.`
* **3. Concluding Remarks**: Briefly reiterate the value of exploring these gaps.
**IMPORTANT**: The identified gaps MUST be logically derived from the content of the `{collection_of_abstracts_text}` and the context of `{research_area_description_text}`. Avoid speculating wildly beyond the provided information. The output should stimulate critical thinking for new research.
- Am besten geeignet für: Unterstützung von Forschern bei der Identifizierung neuer Forschungsfragen und Wissenslücken in einem Teilbereich des Maschinenbaus durch Analyse von Trends und Einschränkungen in einer Sammlung aktueller Abstracts.
- Risikobewertung und Sicherheitsanalyse
- Maschinenbau
AI Aufforderung an FMEA-Tabellenerstellung für Teilsystem
- Design für die Fertigung (DfM), Design-Validierung, Fehlermöglichkeits- und Einflussanalyse (FMEA), Maschinenbau, Prozessverbesserung, Qualitätskontrolle, Qualitätsmanagement, Risikoanalyse, Risikomanagement
Erzeugt eine Vorlage für eine Fehlermöglichkeits- und Einflussanalyse (FMEA) für ein bestimmtes mechanisches Teilsystem, in der potenzielle Fehlermöglichkeiten und -effekte aufgelistet und erste Schweregrade für das Auftreten und die Erkennung empfohlen werden. Damit wird der Prozess der Risikobewertung in Gang gesetzt. Die Ausgabe ist eine CSV-Tabellenstruktur.
Ausgabe:
- CSV
- erfordert kein Live-Internet
- Felder: {subsystem_name_und_funktion} {key_components_list_csv} {operating_environment_description}
Act as a Reliability Engineer specializing in FMEA for Mechanical Systems.
Your TASK is to generate a structured FMEA table (as a CSV string) for the `{subsystem_name_and_function}`
considering its `{key_components_list_csv}` and `{operating_environment_description}`. You should populate the table with common
plausible failure modes
causes
and effects
and suggest initial placeholder RPN ratings or qualitative assessments.
**1. Input Analysis**:
* `{subsystem_name_and_function}`: Clear description (e.g.
'Fuel Pumping Unit for Diesel Engine - delivers pressurized fuel to injectors'
'Landing Gear Retraction Actuator - hydraulic cylinder that retracts/deploys landing gear').
* `{key_components_list_csv}`: CSV string listing major components within the subsystem (e.g.
'Pump_Housing
Electric_Motor
Impeller
Pressure_Regulator
Seals
Bearings').
* `{operating_environment_description}`: Details of operational context (e.g.
'Automotive under-hood
-40C to 120C
high vibration
exposure to fuel/oil'; 'Aerospace
high cycle fatigue
wide temperature range
safety-critical').
**2. FMEA Table Generation Logic**: For each key component in `{key_components_list_csv}` (or for the subsystem as a whole
focusing on its functions):
* **Identify Potential Failure Modes**: What are common ways this component or function can fail? (e.g.
For a pump: 'Fails to deliver pressure'
'Leaks'
'Noisy operation'
'Seizure'. For a motor: 'Fails to start'
'Overheats'
'Excessive vibration').
* **Identify Potential Causes**: For each failure mode
list plausible causes (e.g.
For pump 'Fails to deliver pressure': 'Impeller wear'
'Motor failure'
'Blocked inlet'
'Internal leakage'). Consider material degradation
wear and tear
manufacturing defects
operational errors
environmental factors from `{operating_environment_description}`.
* **Identify Potential Effects**: For each failure mode
what are the consequences on the subsystem
the larger system
and the end-user/environment? (e.g.
For pump 'Fails to deliver pressure': 'Engine stalls (system effect)'
'Vehicle stranded (end-user effect)'
'Loss of mission (aerospace context)').
* **Current Controls (Prevention/Detection)**: Suggest typical preventative controls (design features
manufacturing tests) or detection controls (sensors
inspection methods) that might be in place. If none obvious
state 'None Assumed' or 'To be determined'.
* **Assign Initial S-O-D Ratings (Severity
Occurrence
Detection)**: Use a 1-10 scale (10 being worst for S/O
10 being worst/hardest for D). These are INITIAL ESTIMATES to be reviewed by the engineering team.
* Severity (S): Based on the worst potential effect.
* Occurrence (O): Likelihood of the cause occurring. Consider `{operating_environment_description}`.
* Detection (D): Likelihood of detecting the cause or failure mode before it has a major effect
based on current controls.
* **Calculate RPN (Risk Priority Number)**: S x O x D.
* **Recommended Actions (Placeholder)**: Initially can be 'Investigate further'
'Consider design change'
'Improve detection method' or leave blank for team input.
**3. Output Format (CSV String)**:
* The CSV header MUST be: `Item_Or_Function
Potential_Failure_Mode
Potential_Effect_of_Failure
Severity_S
Potential_Cause_of_Failure
Occurrence_O
Current_Design_Controls_Prevention
Current_Design_Controls_Detection
Detection_D
RPN
Recommended_Actions`
* Each row will represent one failure mode.
* Example row snippet (conceptual):
`Electric_Motor
Fails_to_start
Subsystem_inoperable
Engine_does_not_start
Vehicle_stranded
8
Open_circuit_in_winding
Corrosion_due_to_environment
4
Visual_inspection_at_assembly
None_during_operation
7
224
Review_winding_protection
Consider_sealed_unit`
**IMPORTANT**: This FMEA is a STARTER TEMPLATE. The AI should populate it with plausible
common mechanical failure scenarios. The ratings are subjective and for initial discussion by the engineering team. Emphasize that this output needs thorough review and validation by experts familiar with the specific design.
- Am besten geeignet für: Rationalisierung des FMEA-Prozesses durch Generierung einer vorausgefüllten Tabelle mit potenziellen Fehlerarten, Ursachen, Auswirkungen und anfänglichen RPZ-Bewertungen für mechanische Teilsysteme.
- Risikobewertung und Sicherheitsanalyse
- Maschinenbau
AI Aufforderung an Identifizierung von Gefährdungen in der Fertigungszelle
- Kontinuierliche Verbesserung, Ergonomie, Gefahren- und Betriebsfähigkeitsstudie (HAZOP), Menschliche Faktoren, Schlanke Fertigung, Prozessverbesserung, Risikoanalyse, Risikomanagement, Sicherheit
Identifiziert potenzielle Sicherheitsrisiken in einem neuen oder geänderten Fertigungszellen-Layout auf der Grundlage der beschriebenen Prozesse und menschlichen Interaktionspunkte. Dies hilft bei der proaktiven Behandlung von Sicherheitsbedenken während der Entwurfsphase. Die Ausgabe ist eine kategorisierte Markdown-Liste.
Ausgabe:
- Markdown
- erfordert kein Live-Internet
- Felder: {cell_layout_description} {processes_involved_list_csv} {human_interaction_points_text}
Act as a Manufacturing Safety Engineer.
Your TASK is to identify potential safety hazards for a new or modified manufacturing cell
based on the `{cell_layout_description}`
the `{processes_involved_list_csv}`
and the specified `{human_interaction_points_text}`.
You should categorize hazards for clarity.
**1. Input Analysis**:
* `{cell_layout_description}`: A textual description of the cell's physical layout
including major equipment (e.g.
'Robotic arm'
'CNC machine'
'Conveyor belt'
'Assembly station'
'Parts bins')
and their relative positions. If it's from a sketch
user describes the sketch.
* `{processes_involved_list_csv}`: CSV string listing the manufacturing processes occurring within the cell (e.g.
'Welding
Material_handling
Machining
Automated_inspection
Manual_assembly').
* `{human_interaction_points_text}`: Description of where
when
and how human operators interact with the cell (e.g.
'Loading raw materials at Station A'
'Unloading finished parts from conveyor at Station B'
'Performing maintenance on CNC machine'
'Clearing jams in robot gripper'
'Supervising automated processes').
**2. Hazard Identification Methodology**: Based on the inputs
systematically consider different types of hazards. For each identified hazard
briefly note its potential consequence.
* **Mechanical Hazards**: From moving parts
robots
machinery.
* Crushing
shearing
cutting
entanglement
impact (e.g.
robot arm movement
machine tool operation
conveyor pinch points
falling objects).
* **Electrical Hazards**: From power supplies
wiring
control panels.
* Shock
burns
arc flash.
* **Thermal Hazards**: From hot processes or components.
* Burns from welding
heated tooling
hot parts.
* **Ergonomic Hazards**: From workstation design
manual handling
repetitive tasks at `{human_interaction_points_text}`.
* Musculoskeletal disorders
strain.
* **Process-Specific Hazards**: Related to the `{processes_involved_list_csv}`.
* Welding: Fumes
UV radiation
fire.
* Machining: Flying chips
coolant exposure
tool breakage.
* Material Handling: Dropped loads
collisions with automated guided vehicles (if any).
* **Automation-Related Hazards**: Especially concerning robotics or automated machinery.
* Unexpected robot movement
programming errors
sensor failures leading to incorrect actions
trapping points between robot and fixed structures.
* **Trip
Slip
and Fall Hazards**: From cables
spills
uneven surfaces within the cell layout.
* **Chemical Hazards (if applicable)**: From coolants
lubricants
cleaning agents
process byproducts.
* **Noise Hazards**: From machinery
pneumatic systems.
**3. Output Format (Markdown)**:
* **Title**: Potential Safety Hazards for Manufacturing Cell: `{cell_layout_description (brief title form)}`
* **Introduction**: Briefly state the purpose of the hazard identification.
* **Hazard Categories (use H3 or H4 headings for each category below)**:
* **Mechanical Hazards**
* `- [Hazard 1]: Brief description
e.g.
Robot arm collision with operator at loading station. Potential Consequence: Impact injury
crushing.`
* `- [Hazard 2]: ...`
* **Electrical Hazards**
* `- [Hazard 1]: ...`
* **Thermal Hazards**
* `- [Hazard 1]: ...`
* **(And so on for all relevant categories listed in step 2)**
* **Specific Considerations for Human Interaction Points**:
* Highlight hazards particularly relevant at the points mentioned in `{human_interaction_points_text}`.
* **General Recommendations (Brief)**:
* Suggest general next steps
e.g.
'Conduct detailed risk assessment for each identified hazard.'
'Consider hierarchy of controls (elimination
substitution
engineering controls
administrative
PPE).'
**IMPORTANT**: The list should be comprehensive but focused on PLAUSIBLE hazards given the inputs. The AI is not performing a full risk assessment
just identifying potential hazards for further investigation. Encourage a systematic approach.
- Ideal für: Proaktive Identifizierung und Kategorisierung potenzieller Sicherheitsrisiken im Layout von Fertigungszellen auf der Grundlage von Anlagenprozessen und menschlichen Interaktionspunkten.
- Risikobewertung und Sicherheitsanalyse
- Maschinenbau
AI Aufforderung an Abhilfestrategien für Schwingungsausfälle
- Kontinuierliche Verbesserung, Analyse des Versagens, Maschinenbau, Algorithmen für die vorausschauende Wartung, Prozessverbesserung, Qualitätskontrolle, Risikomanagement, Schwingungsanalyse
Vorschläge und Ausarbeitung potenzieller Minderungsstrategien für schwingungsbedingte Ausfälle in bestimmten mechanischen Geräten anhand einer Zusammenfassung von Schwingungsdaten und aktuellen Versuchen. Dies hilft Ingenieuren, Lösungen zur Verbesserung der Zuverlässigkeit zu finden. Die Ausgabe ist eine Markdown-Liste.
Ausgabe:
- Markdown
- erfordert kein Live-Internet
- Felder: {equipment_description_text} {vibration_data_summary_text} {current_mitigation_attempts_text}
Act as a Vibration Analysis and Reliability Engineering Consultant.
Your TASK is to propose and elaborate on potential mitigation strategies for vibration-induced failures in the `{equipment_description_text}`
considering the `{vibration_data_summary_text}` and any `{current_mitigation_attempts_text}`.
You should suggest a range of solutions
from simple to more complex.
**1. Input Analysis**:
* `{equipment_description_text}`: Description of the affected equipment and its function (e.g.
'Centrifugal pump
Model XYZ
used for cooling water circulation'
'Large industrial fan mounted on steel frame'
'Pipeline section experiencing flow-induced vibration').
* `{vibration_data_summary_text}`: Key characteristics of the problematic vibration (e.g.
'High amplitude at 1x rotational speed (unbalance)'
'Dominant frequency matches nearby machine's operating speed (external source)'
'Broadband random vibration with peaks near structural resonances'
'Flow-induced vibration at 50-60 Hz'). Include specific frequencies and amplitudes if known.
* `{current_mitigation_attempts_text}`: What
if anything
has already been tried and its outcome (e.g.
'Attempted balancing
reduced vibration by 20% but still too high'
'Added stiffeners to frame
shifted resonance but problem persists at new frequency'
'None attempted yet').
**2. Mitigation Strategy Brainstorming & Elaboration**: Based on the inputs
propose several distinct strategies. For each strategy:
* **Strategy Name/Type**: (e.g.
Source Modification
Path Interruption
System Modification
Damping Treatment).
* **Specific Action(s)**: Detail the concrete steps or changes involved.
* **Principle of Operation**: Explain HOW this strategy reduces vibration or its effects in the context of the `{vibration_data_summary_text}`.
* **Applicability/Suitability**: How well does this strategy address the likely root cause suggested by the vibration data? (e.g.
If unbalance is indicated
balancing is highly applicable).
* **Potential Pros**: Advantages of this approach.
* **Potential Cons/Challenges**: Disadvantages
cost
complexity
potential side effects.
* **Consideration given `{current_mitigation_attempts_text}`**: How does this build upon or differ from what was already tried?
**Categories of Strategies to Consider (examples
tailor to the problem)**:
* **Source Treatment**:
* Balancing (for rotating machinery).
* Alignment (for coupled machines).
* Modifying operating speed to avoid resonance.
* Reducing fluid flow velocity or changing flow path (for FIV).
* **Path Treatment**:
* Isolation: Using resilient mounts (elastomeric
spring isolators) to decouple the source from the receiver.
* Barriers: Enclosures for noise/vibration.
* **System Response Modification**:
* Stiffening: Adding braces or gussets to shift natural frequencies away from excitation frequencies.
* Mass Addition: Adding mass to shift natural frequencies.
* Damping:
* Applied Damping Treatments (e.g.
viscoelastic layers
constrained layer damping).
* Tuned Mass Dampers (TMDs) for specific problematic frequencies.
* Active Vibration Control (more complex
using sensors
actuators
and controllers).
**3. Output Format (Markdown)**:
* **Title**: Vibration Mitigation Strategies for `{equipment_description_text}`.
* **1. Summary of Vibration Problem**: Briefly restate the core issue based on inputs.
* **2. Proposed Mitigation Strategies**: For each strategy:
* `### Strategy X: [Strategy Name/Type]`
* `**Specific Actions:**`
* `**Principle of Operation:**`
* `**Applicability/Suitability:**`
* `**Potential Pros:**`
* `**Potential Cons/Challenges:**`
* `**Relation to Previous Attempts:**`
* **3. General Recommendations & Next Steps**: Suggest a logical approach to selecting and implementing strategies (e.g.
'Start with source treatment if possible'
'Consider simulation or modal analysis to predict effectiveness of structural modifications'
'Implement incrementally and monitor results').
**IMPORTANT**: The strategies should be technically sound and relevant to the described problem. The AI should aim to provide a range of options suitable for different levels of complexity and cost.
- Am besten geeignet für: Unterstützung von Maschinenbauingenieuren bei der Ermittlung und Bewertung verschiedener Minderungsstrategien für schwingungsbedingte Ausfälle auf der Grundlage von Gerätetyp und Schwingungseigenschaften.
- Risikobewertung und Sicherheitsanalyse
- Maschinenbau
AI Aufforderung an Sicherheitsüberprüfung der Maschinenkonstruktion
- Design für die Fertigung (DfM), Design für Nachhaltigkeit, Umweltverträglichkeitsprüfung, Ergonomie, Qualitätssicherung, Qualitätskontrolle, Risikomanagement, Sicherheit
Bewertet die Merkmale einer Maschinenkonstruktion anhand vom Benutzer bereitgestellter Auszüge aus einschlägigen Sicherheitsnormen, um potenzielle Bereiche zu ermitteln, in denen die Vorschriften nicht eingehalten werden. Dies hilft bei der Konstruktion von Maschinen, die von Anfang an sicherer sind. Die Ausgabe ist eine Checkliste mit Abschriften.
Ausgabe:
- Markdown
- erfordert kein Live-Internet
- Felder: {machine_design_features_description_text} {safety_standard_clauses_text} {Betriebsland_für_Kontext}
Act as a Machinery Safety Specialist with expertise in CE Marking/OSHA compliance (or general machinery safety principles).
Your TASK is to perform a preliminary safety compliance check of the described `{machine_design_features_description_text}` against the provided `{safety_standard_clauses_text}`. Consider the general safety expectations for the `{country_of_operation_for_context}` if it influences interpretation (e.g. EU vs USA).
**1. Input Analysis**:
* `{machine_design_features_description_text}`: A textual description of the machine's key design features
safety components (guards
E-stops
interlocks)
operational modes
and human interaction points.
* `{safety_standard_clauses_text}`: Text containing specific clauses or requirements excerpted from relevant safety standard(s) (e.g.
snippets from ISO 12100
ISO 13849-1
IEC 60204-1
or specific Type-C standards). The user provides these excerpts.
* `{country_of_operation_for_context}`: The intended country or region of operation (e.g.
'European Union'
'USA'
'China')
as general safety philosophies can differ.
**2. Compliance Check Methodology**: For EACH provided clause in `{safety_standard_clauses_text}`:
* **Understand Clause Requirement**: Interpret the main safety objective or requirement of the clause.
* **Compare with Design Features**: Assess the `{machine_design_features_description_text}` against this specific requirement.
* Does the design appear to meet the requirement?
* Are there features that clearly violate or contradict the requirement?
* Is there insufficient information in the design description to make a judgment?
* **Identify Potential Gaps or Non-Compliances**: Clearly state where the design may fall short.
* **Suggest Areas for Improvement or Verification**: What specific aspects of the design should be reviewed
modified
or further documented to ensure compliance with this clause?
**3. Output Format (Markdown)**:
* **Title**: Preliminary Safety Compliance Check: [Machine Name/Type from description] vs. Provided Standard Clauses.
* **Context**: Machine intended for operation in: `{country_of_operation_for_context}`.
* **Compliance Checklist**: For each clause provided by the user:
* `---`
* `**Clause Reference:** [Quote or clearly reference the clause from {safety_standard_clauses_text}]`
* `**Clause Summary/Objective:** [Your brief interpretation of what the clause aims to achieve]`
* `**Assessment against Machine Design ({machine_design_features_description_text}):**`
* ` - **Compliance Status:** [Compliant / Potentially Non-Compliant / Insufficient Information / Partially Compliant]`
* ` - **Observations/Reasoning:** [Explain your assessment based on the design features. Be specific.]`
* ` - **Potential Gaps Identified (if any):**`
* ` - Gap 1: ...`
* ` - Gap 2: ...`
* ` - **Recommendations/Questions for Design Team:**`
* ` - Recommendation 1: e.g.
'Verify guard opening sizes against EN ISO 13857 for this hazard zone.'`
* ` - Question 1: e.g.
'Is the emergency stop a Category 0 or Category 1 stop as per IEC 60204-1?'`
* `---`
* **Overall Disclaimer**: `This is a preliminary assessment based SOLELY on the provided design description and standard excerpts. A full compliance assessment requires a detailed review of the complete machine
its documentation
a full risk assessment
and consultation of the complete unabridged standards.`
**IMPORTANT**: The AI is NOT certifying compliance. It is identifying potential areas of concern or questions based on a limited comparison. The assessment should be objective and constructive
aiming to help the design team improve safety. If a clause is very complex or requires deep domain-specific knowledge not available
it's okay to state that a specialist review is needed for that point.
- Ideal für: Erleichterung der Überprüfung der Sicherheitskonformität in einem frühen Stadium, indem beschriebene Maschinenmerkmale mit bestimmten Klauseln aus den vom Benutzer angegebenen einschlägigen Sicherheitsnormen verglichen werden.
- Ethische Erwägungen und Folgenanalyse
- Maschinenbau
AI Aufforderung an Ethische Risikobewertung für mechanische Projekte
- Umwelttechnik, Umweltauswirkungen, Maschinenbau, Projektmanagement, Risikomanagement, Sicherheit, Nachhaltigkeitspraktiken, Nachhaltige Entwicklung
Diese Aufforderung leitet die KI dazu an, die ethischen Risiken und gesellschaftlichen Folgen eines bestimmten Maschinenbauprojekts unter Berücksichtigung von Umwelt-, Sicherheits- und sozialen Einflussfaktoren zu analysieren. Sie erfordert eine detaillierte Projektbeschreibung und die beabsichtigte Anwendung, um eine strukturierte ethische Risikobewertung mit Empfehlungen für Abhilfemaßnahmen zu erstellen.
Ausgabe:
- Text
- erfordert kein Live-Internet
- Felder: {project_description} {intended_application}
Analyze the following mechanical engineering project for potential ethical risks and societal consequences. The project description is: {project_description}. The intended application is: {intended_application}. Please provide a detailed ethical risk assessment that includes: 1) Identification of possible environmental impacts 2) Safety concerns for users and communities 3) Social and economic consequences 4) Recommendations for mitigating identified risks. Format your response using clear headings and bullet points for each section. Capitalize important keywords and use markdown for readability.
- Am besten geeignet für: Am besten geeignet für die Bewertung ethischer Herausforderungen und gesellschaftlicher Auswirkungen neuer Maschinenbauprojekte
- Ethische Erwägungen und Folgenanalyse
- Maschinenbau
AI Aufforderung an Generator für Nachhaltigkeits- und Umweltverträglichkeitsberichte
- Umwelttechnik, Umweltauswirkungen, Lebenszyklusbewertung (LCA), Lebenszyklus-Folgenabschätzung (LCIA), Nachhaltigkeitsmetriken, Nachhaltige Entwicklung, Nachhaltige Innovation, Nachhaltige Materialien, Nachhaltige Praktiken
Diese Eingabeaufforderung fordert die KI auf, einen umfassenden Nachhaltigkeits- und Umweltverträglichkeitsbericht für eine bestimmte Technologie oder einen bestimmten Prozess im Maschinenbau zu erstellen, der die Lebenszyklusanalyse, die verwendeten Materialien und den Energieverbrauch berücksichtigt. Der Benutzer gibt den Namen der Technologie und die wichtigsten Parameter ein.
Ausgabe:
- Markdown
- erfordert kein Live-Internet
- Felder: {technology_name} {key_parameters}
Generate a detailed sustainability and environmental impact report for the mechanical engineering technology named {technology_name}. Use the following key parameters to guide your analysis: {key_parameters}. Include sections on: 1) Lifecycle environmental impact including raw materials sourcing and disposal 2) Energy consumption and efficiency 3) Potential for recycling or reuse 4) Recommendations for improving sustainability. Use markdown formatting with headings, bullet points, and bold important terms for clarity.
- Am besten geeignet für: Am besten geeignet für die Erstellung strukturierter Umweltverträglichkeitsdokumentationen für technische Innovationen
Gehen wir davon aus, dass KI im Maschinenbau immer die besten Prompts generieren kann? Wie werden diese im Übrigen generiert?
Wird die KI menschliche Ingenieure überflüssig machen?
Verwandte Artikel
Die besten Witze über Ingenieure (und Designer, Entwickler, Vermarkter …)
Die 5 Stufen der Capability Maturity Model Integration (CMMI)
Industrielles Internet der Dinge (IIoT)
Concept Explorer™ von Innovation.world
Programmiersprachen für Technik, Wissenschaft und Forschung – Vollständiger Vergleich
Materialidentifizierungstechniken und positive Materialidentifizierung (PMI)