» Temperature Dependence of Viscosity

Temperature Dependence of Viscosity

1850

For a Newtonian fluid, viscosity is a function of temperature and pressure but not shear rate. In liquids, viscosity decreases significantly as temperature increases because higher thermal energy allows molecules to overcome cohesive intermolecular forces more easily. Conversely, in gases, viscosity increases with temperature as more frequent molecular collisions at higher speeds lead to greater momentum transfer.

The relationship between viscosity and temperature is fundamentally different for liquids and gases, stemming from their distinct molecular mechanisms for momentum transfer. In liquids, molecules are closely packed and held together by strong intermolecular cohesive forces. Viscous forces arise from the resistance of these molecules to sliding past one another. As temperature rises, the kinetic energy of the molecules increases, allowing them to overcome these cohesive forces more readily. This results in a decrease in the liquid’s resistance to flow, and thus, a lower viscosity. This effect is pronounced; for example, the viscosity of water decreases by a factor of about 6 between 0°C and 100°C.

In gases, molecules are far apart and interact primarily through collisions. Viscosity in a gas is a measure of the transport of momentum between layers moving at different velocities. This momentum is transferred by molecules moving between the layers and colliding. As temperature increases, the random thermal velocity of the gas molecules increases. This leads to more frequent and more energetic collisions, resulting in a more effective transfer of momentum between layers and, consequently, an increase in viscosity. This behavior was one of the early triumphs of the kinetic theory of gases, as it was a counter-intuitive prediction later confirmed by experiment.

UNESCO Nomenclature: 2212
– Thermodynamics

类型

Physical Property

Disruption

Substantial

使用方法

Widespread Use

Precursors

  • Development of the thermometer
  • Rudolf Clausius’s and James Clerk Maxwell’s work on the kinetic theory of gases
  • Studies on intermolecular forces by Johannes Diderik van der Waals
  • Early experiments on fluid flow by Poiseuille and Hagen

应用

  • engine oil formulation (multigrade oils)
  • industrial heat exchangers
  • glass manufacturing and molding
  • food processing (e.g., controlling chocolate or honey flow)
  • geothermal energy extraction

专利:

Potential Innovations Ideas

级别需要会员

您必须是!!等级!!会员才能访问此内容。

立即加入

已经是会员? 在此登录
Related to: viscosity, temperature dependence, liquids, gases, kinetic theory, intermolecular forces, momentum transfer, fluid properties

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

迎接新挑战
机械工程师、项目或研发经理
有效的产品开发

可在短时间内接受新的挑战。
通过 LinkedIn 联系我
塑料金属电子集成、成本设计、GMP、人体工程学、中高容量设备和耗材、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485

我们正在寻找新的赞助商

 

您的公司或机构从事技术、科学或研究吗?
> 给我们发送消息 <

接收所有新文章
免费,无垃圾邮件,电子邮件不分发也不转售

或者您可以免费获得完整会员资格以访问所有受限制的内容>这里<

Related Invention, Innovation & Technical Principles

滚动至顶部

你可能还喜欢