» Shockley–Queisser Limit

Shockley–Queisser Limit

1961
  • William Shockley
  • Hans-Joachim Queisser

The Shockley–Queisser limit is the maximum theoretical efficiency for a single p-n junction solar cell. It considers only radiative recombination and black-body radiation losses. For a single-junction cell with an optimal bandgap of 1.34 eV under standard solar illumination (AM1.5G), the maximum efficiency is approximately 33.7%. This fundamental limit guides solar cell research and design.

The Shockley–Queisser (SQ) limit, also known as the detailed balance limit, provides a foundational ceiling on the energy conversion efficiency of solar cells. It is derived by analyzing the 热力学 balance between the energy absorbed from the sun and the energy lost by the cell. The model makes several key assumptions: the cell is a single p-n junction, it operates at a standard temperature (300 K), and it is illuminated by unconcentrated sunlight (AM1.5G spectrum).

The calculation accounts for several unavoidable loss mechanisms. First, photons with energy less than the semiconductor’s bandgap ([latex]E_g[/latex]) pass through the cell without being absorbed, contributing nothing to the current. Second, for photons with energy greater than the bandgap, the excess energy ([latex]E_{photon} – E_g[/latex]) is quickly lost as heat through thermalization, as the excited electron relaxes to the bottom of the conduction band. The voltage is thus limited by the bandgap, not the photon energy. The most significant loss mechanism considered in the SQ limit is radiative recombination. This is the reverse process of absorption, where an electron and hole recombine and emit a photon. In an ideal cell, this is the only recombination pathway. The cell, being at a non-zero temperature, also radiates energy as a black body.

By balancing the incoming photon flux from the sun with the outgoing flux from radiative recombination and black-body radiation, Shockley and Queisser derived the current-voltage characteristic of an ideal cell. The maximum power point on this curve defines the maximum efficiency. The efficiency is a strong function of the bandgap energy, peaking at ~33.7% for a bandgap of 1.34 eV, which is close to that of Gallium Arsenide (GaAs). For silicon ([latex]E_g \approx 1.12[/latex] eV), the limit is around 32%.

UNESCO Nomenclature: 2210
– Physics

类型

Theoretical Limit

Disruption

Foundational

使用方法

Widespread Use

Precursors

  • planck’s law of black-body radiation
  • einstein’s work on the photoelectric effect and stimulated emission
  • semiconductor p-n junction theory
  • thermodynamics principles, particularly the second law

应用

  • benchmark for single-junction solar cell performance
  • design of multi-junction solar cells to overcome the limit
  • research into hot-carrier and upconversion/downconversion solar cells
  • economic modeling of solar energy costs

专利:

Potential Innovations Ideas

级别需要会员

您必须是!!等级!!会员才能访问此内容。

立即加入

已经是会员? 在此登录
Related to: shockley-queisser limit, solar cell efficiency, thermodynamic limit, radiative recombination, bandgap, detailed balance, single-junction, black-body radiation

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

迎接新挑战
机械工程师、项目或研发经理
有效的产品开发

可在短时间内接受新的挑战。
通过 LinkedIn 联系我
塑料金属电子集成、成本设计、GMP、人体工程学、中高容量设备和耗材、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485

我们正在寻找新的赞助商

 

您的公司或机构从事技术、科学或研究吗?
> 给我们发送消息 <

接收所有新文章
免费,无垃圾邮件,电子邮件不分发也不转售

或者您可以免费获得完整会员资格以访问所有受限制的内容>这里<

Historical Context

(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)

Related Invention, Innovation & Technical Principles

滚动至顶部

你可能还喜欢