» 拉格朗日力学

拉格朗日力学

1788
  • Joseph-Louis Lagrange
展示拉格朗日力学方程和机械模型的学习室,展示物理学应用。

A reformulation of classical 力学 based on the principle of stationary action. It uses a scalar quantity called the Lagrangian, defined as kinetic energy minus potential energy ([乳胶]L = T – V[/latex]). The equations of motion are derived from the Euler-Lagrange equation, [latex]\frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}_i} \right) – \frac{\partial L}{\partial q_i} = 0[/latex], using generalized coordinates, which simplifies analysis of complex systems with constraints.

拉格朗日力学由约瑟夫-路易斯·拉格朗日创立,它为牛顿力学提供了一个强大而优雅的替代方案。它不再关注力和加速度(它们是矢量),而是关注能量(它们是标量)。这种视角的转变通常可以显著简化问题,尤其是那些涉及约束的问题。

The central concept is the principle of stationary action. It posits that the path taken by a physical system between two points in time is the one for which the ‘action’ is stationary (a minimum, maximum, or saddle point). The action is defined as the time integral of the Lagrangian function, [latex]S = \int_{t_1}^{t_2} L(q, \dot{q}, t) \, dt[/latex]. The Lagrangian, [latex]L[/latex], is defined as the kinetic energy [latex]T[/latex] minus the potential energy [latex]V[/latex] of the system.

By applying the calculus of variations to find the path that makes the action stationary, one derives the Euler-Lagrange equations. A key advantage of this approach is the use of generalized coordinates ([latex]q_i[/latex]). These are any set of parameters that uniquely define the configuration of the system. For example, for a double pendulum, the two angles are natural generalized coordinates. This freedom to choose the most convenient coordinate system is a major strength. Furthermore, forces of constraint (like the tension in a pendulum rod) do not appear in the Lagrangian formulation, as they do no work, meaning they can be ignored, greatly simplifying the equations of motion for constrained systems.

This formalism is not only a powerful tool in classical mechanics but also serves as the foundation for more advanced theories, including quantum mechanics (through Feynman’s path integral formulation) and quantum field theory.

UNESCO Nomenclature: 2211
– Physics

类型

抽象系统

中断

基础

使用方法

广泛使用

前体

  • 牛顿力学
  • Principle of virtual work (d’Alembert’s principle)
  • 变分法(由欧拉和拉格朗日开发)
  • Maupertuis’s principle of least action

应用

  • 机器人技术(逆运动学)
  • 控制理论
  • 量子场论(作为基础框架)
  • 分子动力学模拟
  • 带约束的复杂机械系统分析

专利:

NA

潜在的创新想法

级别需要会员

您必须是!!等级!!会员才能访问此内容。

立即加入

已经是会员? 在此登录
Related to: lagrangian, analytical mechanics, principle of least action, generalized coordinates, euler-lagrange equation, calculus of variations, kinetic energy, potential energy.

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

迎接新挑战
机械工程师、项目、工艺工程师或研发经理
有效的产品开发

可在短时间内接受新的挑战。
通过 LinkedIn 联系我
塑料金属电子集成、成本设计、GMP、人体工程学、中高容量设备和耗材、精益制造、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485

我们正在寻找新的赞助商

 

您的公司或机构从事技术、科学或研究吗?
> 给我们发送消息 <

接收所有新文章
免费,无垃圾邮件,电子邮件不分发也不转售

或者您可以免费获得完整会员资格以访问所有受限制的内容>这里<

历史背景

(如果日期不详或不相关,例如 "流体力学",则对其显著出现的时间作了四舍五入的估计)。

相关发明、创新和技术原理

滚动至顶部

你可能还喜欢