» 生物膜中的电化学电位

生物膜中的电化学电位

1950
  • Alan Hodgkin
  • Andrew Huxley
  • Bernard Katz
使用实验室设备研究细胞膜电化学势的生物物理学家。

(generate image for illustration only)

Electrochemical potential is fundamental to life, driving processes across cell membranes. Ion pumps actively create concentration gradients, while the selective permeability of ion channels establishes an electrical potential (membrane potential). The resulting electrochemical gradient dictates the passive flow of ions, which is crucial for nerve signaling (action potentials), muscle contraction, and cellular energy production (ATP synthesis) in mitochondria.

The existence of life depends on maintaining a state of disequilibrium across cell membranes, which is quantified by electrochemical potential gradients. The sodium-potassium ([latex]Na^+/K^+[/latex]-ATPase), for example, uses the energy from ATP hydrolysis to actively transport [latex]Na^+[/latex] ions out of the cell and [latex]K^+[/latex] ions in. This action establishes steep concentration gradients (a chemical potential difference) and contributes to an electrical potential difference, as more positive charge is pumped out than in.

The cell membrane is studded with ion channels, which are proteins that allow specific ions to pass through. The resting membrane potential is primarily established by ‘leak’ channels that are more permeable to [latex]K^+[/latex] than [latex]Na^+[/latex]. [latex]K^+[/latex] ions flow out of the cell down their concentration gradient, leaving behind a net negative charge inside and thus creating an electrical potential that opposes further outflow. The equilibrium, described by the Goldman-Hodgkin-Katz equation, is reached when the electrical force pulling [latex]K^+[/latex] in balances the chemical force pushing it out.

This stored energy in the electrochemical gradient is harnessed for vital functions. In neurons, a stimulus can open voltage-gated ion channels, allowing a rapid influx of [latex]Na^+[/latex] that depolarizes the membrane and creates an action potential. In mitochondria, the electron transport chain pumps protons across the inner membrane, creating a powerful electrochemical gradient that drives ATP synthase to produce the cell’s primary energy currency, ATP.

UNESCO Nomenclature: 2406
– Biophysics

类型

Biological Process

中断

革命

使用方法

广泛使用

前体

  • luigi galvani’s discovery of ‘animal electricity’
  • julius bernstein’s membrane hypothesis for nerve potential
  • walther nernst’s equation for equilibrium potential
  • 钠钾泵的发现者:jens christian skou

应用

  • 药理学(针对离子通道的药物)
  • 神经科学(了解神经冲动传播)
  • 心脏病学(心电图、心电图和了解心律)
  • 生物能量学(研究线粒体功能和疾病)
  • 麻醉剂和神经毒素的开发

专利:

NA

潜在的创新想法

级别需要会员

您必须是!!等级!!会员才能访问此内容。

立即加入

已经是会员? 在此登录
Related to: membrane potential, ion channel, action potential, atp synthesis, hodgkin-huxley model, bioenergetics, neuroscience, sodium-potassium pump.

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

迎接新挑战
机械工程师、项目、工艺工程师或研发经理
有效的产品开发

可在短时间内接受新的挑战。
通过 LinkedIn 联系我
塑料金属电子集成、成本设计、GMP、人体工程学、中高容量设备和耗材、精益制造、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485

我们正在寻找新的赞助商

 

您的公司或机构从事技术、科学或研究吗?
> 给我们发送消息 <

接收所有新文章
免费,无垃圾邮件,电子邮件不分发也不转售

或者您可以免费获得完整会员资格以访问所有受限制的内容>这里<

历史背景

生物膜中的电化学电位

1910
1921
1940
1950
1950
1960
1970
1902
1920
1930
1940
1950
1951
1967
1973

(如果日期不详或不相关,例如 "流体力学",则对其显著出现的时间作了四舍五入的估计)。

相关发明、创新和技术原理

滚动至顶部

你可能还喜欢