A differentiable manifold is a topological space that is locally similar to Euclidean space, allowing calculus to be applied. Each point has a neighborhood that is homeomorphic to an open subset of [乳胶]\mathbb{R}^n[/latex]. These local coordinate systems, called charts, are related by smooth transition functions, forming an atlas that defines the manifold’s differentiable structure.
可微流形(geom)
- Bernhard Riemann

A differentiable manifold is the central object of study in differential geometry. The concept formalizes the idea of a “curved space” of any dimension. While globally a manifold can be complex (like a sphere or a torus), locally, around any point, it looks like a flat piece of Euclidean space. This local “flatness” is key, as it allows us to use the tools of multivariable calculus.
The formal definition involves a set of points M, a topology on M, and an atlas. An atlas is a collection of charts, where each chart is a pair (U, φ), with U being an open subset of M and φ being a homeomorphism from U to an open subset of [latex]\mathbb{R}^n[/latex]. For any two overlapping charts, (U, φ) and (V, ψ), the transition map [latex]\psi \circ \phi^{-1}[/latex] from [latex]\phi(U \cap V)[/latex] to [latex]\psi(U \cap V)[/latex] must be a diffeomorphism (infinitely differentiable with a differentiable inverse). This compatibility condition ensures that calculus performed in one coordinate system is consistent with calculus performed in another.
这种结构允许在流形上定义切空间、矢量场和微分形式,而不受任何特定坐标系的限制。它提供了一个从本质上研究几何的框架,而无需将空间嵌入到更高维度的环境空间中。
类型
中断
使用方法
前体
- 欧几里得几何
- 非欧几里得几何(罗巴切夫斯基、博雅伊)
- 卡尔·弗里德里希·高斯的曲面理论
- 勒内·笛卡尔的坐标系
- 拓扑学的早期概念
应用
- 广义相对论(时空被建模为 4d 洛伦兹流形)
- 机器人技术(机器人的配置空间是流形)
- 计算机图形学(表示复杂表面)
- 弦理论
- 经典力学(相空间是辛流形)
专利:
迎接新挑战
机械工程师、项目、工艺工程师或研发经理
可在短时间内接受新的挑战。
通过 LinkedIn 联系我
塑料金属电子集成、成本设计、GMP、人体工程学、中高容量设备和耗材、精益制造、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485
历史背景
可微流形(geom)
(如果日期不详或不相关,例如 "流体力学",则对其显著出现的时间作了四舍五入的估计)。
相关发明、创新和技术原理