» CRISPR-Cas9 作为可编程基因编辑工具

CRISPR-Cas9 作为可编程基因编辑工具

2012
  • Jennifer Doudna
  • Emmanuelle Charpentier
Biotechnology laboratory with CRISPR-Cas9 gene editing tools and modified cells.

天然的 CRISPR-Cas9 系统被重新利用,成为一项革命性的基因编辑技术。通过将两种必需的 RNA 成分(crRNA 和 tracrRNA)融合成一个合成的单向导 RNA (sgRNA),科学家创建了一个简单的双组分系统。该 sgRNA 引导 Cas9 核酸酶到达任何所需的 DNA 位置,从而造成精确的双链断裂,然后细胞可以修复该断裂,从而引入靶向突变或插入新的遗传物质。

The transformation of the CRISPR-Cas9 bacterial immune system into a universal tool for genome editing was a landmark achievement in molecular biology. The key insight was recognizing its potential for being reprogrammed. In its natural form, the Type II system uses three components: the Cas9 protein, a crRNA that contains the targeting sequence, and a tracrRNA that is crucial for crRNA maturation and Cas9 activation. The Doudna and Charpentier labs demonstrated that this system could be simplified. They engineered a single chimeric RNA, which they termed a single-guide RNA (sgRNA), by linking the 3′ end of the crRNA to the 5′ end of the tracrRNA with a synthetic hairpin loop. This sgRNA retained all the necessary functions of the dual-RNA system.

This simplification was revolutionary because it meant that to retarget the Cas9 nuclease to a new DNA site, one only needed to synthesize a new sgRNA with a different 20-nucleotide guide sequence. This made the technology remarkably easy to use, cheap, and scalable compared to previous editing methods like Zinc Finger Nucleases (ZFNs) and TALENs, which required complex and costly protein engineering for each new target. When the Cas9-sgRNA complex is introduced into a cell, it locates its target DNA sequence and creates a double-strand break (DSB). The cell’s natural DNA repair machinery then takes over. The error-prone Non-Homologous End Joining (NHEJ) pathway often introduces small insertions or deletions (indels), effectively knocking out the gene. Alternatively, if a donor DNA template is supplied, the more precise Homology-Directed Repair (HDR) pathway can be used to insert new sequences or correct mutations.

UNESCO Nomenclature: 3101
– Biotechnology

类型

Biotechnology

中断

革命

使用方法

广泛使用

前体

  • 发现细菌中天然的crispr-cas9机制
  • tracrrna的鉴定和功能表征
  • 了解细胞 DNA 修复机制(nhej 和 hdr)
  • 先前的基因编辑技术,如 zfns 和 talens,确立了靶向双链断裂的原理
  • RNA合成和基因工程技术的进展

应用

  • 镰状细胞性贫血和β地中海贫血等遗传疾病的基因治疗
  • 开发抗病作物和牲畜
  • 创建人类疾病的动物模型
  • 功能基因组学研究,研究基因功能(基因敲除)
  • 传染病快速诊断技术的开发
  • 癌症免疫疗法(例如CAR-T细胞疗法)

专利:

  • US8697359B1
  • US10000772B2
  • EP2771468B1

潜在的创新想法

级别需要会员

您必须是!!等级!!会员才能访问此内容。

立即加入

已经是会员? 在此登录
Related to: gene editing, CRISPR-Cas9, sgrna, jennifer doudna, emmanuelle charpentier, genetic engineering, double-strand break, nhej, hdr, biotechnology.

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

迎接新挑战
机械工程师、项目、工艺工程师或研发经理
有效的产品开发

可在短时间内接受新的挑战。
通过 LinkedIn 联系我
塑料金属电子集成、成本设计、GMP、人体工程学、中高容量设备和耗材、精益制造、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485

我们正在寻找新的赞助商

 

您的公司或机构从事技术、科学或研究吗?
> 给我们发送消息 <

接收所有新文章
免费,无垃圾邮件,电子邮件不分发也不转售

或者您可以免费获得完整会员资格以访问所有受限制的内容>这里<

历史背景

相关发明、创新和技术原理

滚动至顶部

你可能还喜欢