The Cauchy stress tensor, denoted [latex]\boldsymbol{\sigma}[/latex], is a second-order tensor that completely defines the state of stress at a point inside a material. It relates the traction vector (force per unit area) [latex]\mathbf{T}[/latex] on any surface passing through that point to the surface’s normal vector [latex]\mathbf{n}[/latex] via the linear relationship [latex]\mathbf{T} = \boldsymbol{\sigma} \cdot \mathbf{n}[/latex].
Cauchy Stress Tensor
- Augustin-Louis Cauchy
The Cauchy stress tensor provides a complete description of the internal forces acting within a deformable body. Imagine an infinitesimal cube of material at a point P. Forces are exerted on each face of this cube by the surrounding material. The stress tensor [latex]\boldsymbol{\sigma}[/latex] is a 3×3 matrix whose components [latex]\sigma_{ij}[/latex] represent the stress on the i-th face in the j-th direction. The diagonal components ([latex]\sigma_{11}, \sigma_{22}, \sigma_{33}[/latex]) are normal stresses, representing pulling (tension) or pushing (compression) perpendicular to the face. The off-diagonal components ([latex]\sigma_{12}, \sigma_{23},[/latex] etc.) are shear stresses, representing forces acting parallel to the face.
A key result, known as Cauchy’s stress theorem, states that knowledge of the stress vectors on three mutually perpendicular planes is sufficient to determine the stress vector on any other plane passing through that point. This is encapsulated in the formula [latex]\mathbf{T}^{(mathbf{n})} = \boldsymbol{\sigma}^T \mathbf{n}[/latex]. Furthermore, the conservation of angular momentum requires the stress tensor to be symmetric ([latex]\sigma_{ij} = \sigma_{ji}[/latex]), which reduces the number of independent components from nine to six. This tensor is fundamental because it allows engineers to analyze the stress state at any point within an object, regardless of its orientation, and to predict whether the material will yield or fracture under applied loads by comparing the stress state to the material’s strength properties.
类型
Disruption
使用方法
Precursors
应用
- structural analysis of buildings, bridges, and aircraft to predict failure
- geomechanics for analyzing stresses in rock and soil for tunneling and foundation design
- materials science for understanding material failure mechanisms like fracture and fatigue
- biomechanics for calculating stresses in bones and tissues under load
专利:
迎接新挑战
机械工程师、项目或研发经理
可在短时间内接受新的挑战。
通过 LinkedIn 联系我
塑料金属电子集成、成本设计、GMP、人体工程学、中高容量设备和耗材、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485
Related Invention, Innovation & Technical Principles