» 伯努利原理

伯努利原理

1738
  • Daniel Bernoulli
飞机机翼展示了流体力学中产生升力的伯努利原理。

Bernoulli’s principle states that for an inviscid flow, an increase in a fluid’s speed occurs simultaneously with a decrease in 压力 or a decrease in its potential energy. It is a statement of the 能量守恒 for a moving fluid, commonly expressed as [latex]p + \frac{1}{2}\rho v^2 + \rho gh = \text{constant}[/latex] along a streamline.

Bernoulli’s principle is derived from the principle of conservation of energy applied to an ideal fluid in motion. The equation’s three terms represent different forms of energy per unit volume. The term [latex]p[/latex] is the static pressure, representing the internal energy of the fluid. The term [latex]\frac{1}{2}\rho v^2[/latex] is the dynamic pressure, which is the kinetic energy of the fluid in motion. The final term, [latex]\rho gh[/latex], is the hydrostatic pressure, representing the fluid’s potential energy due to its elevation [latex]h[/latex] in a gravitational field [latex]g[/latex]. The principle asserts that the sum of these three terms remains constant along a single streamline.

It is crucial to understand the assumptions under which Bernoulli’s principle is valid: the flow must be steady (velocity at a point does not change with time), incompressible (density is constant), and inviscid (no frictional forces from 粘度). These are significant limitations, meaning the principle is an idealization. In real-world applications, viscous effects can cause energy losses that are not accounted for in the basic equation.

While often used to provide a simplified explanation for aerodynamic lift—where air traveling faster over the curved upper surface of a wing creates lower pressure compared to the flatter bottom surface—this is an incomplete picture. A full explanation of lift also requires considering Newton’s third law and the deflection of air downwards (downwash). Nevertheless, Bernoulli’s principle provides a powerful and intuitive tool for a first-order analysis of many fluid dynamics phenomena, from measuring flow rates with a Venturi meter to understanding how a perfume atomizer works.

UNESCO Nomenclature: 2210
- 机械

类型

抽象系统

中断

基础

使用方法

广泛使用

前体

  • isaac newton’s laws of motion
  • leonhard euler’s work on fluid dynamics
  • 能量守恒的早期概念
  • 伊万杰利斯塔·托里拆利和布莱斯·帕斯卡的压力研究

应用

  • 飞机机翼升力的产生(作为一个促成因素)
  • 发动机中的化油器
  • 用于流量测量的文丘里流量计
  • 雾化器和喷枪
  • 用于测量空速的皮托管

专利:

NA

潜在的创新想法

级别需要会员

您必须是!!等级!!会员才能访问此内容。

立即加入

已经是会员? 在此登录
Related to: bernoulli’s principle, fluid dynamics, conservation of energy, pressure, velocity, inviscid flow, streamline, aerodynamics.

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

迎接新挑战
机械工程师、项目、工艺工程师或研发经理
有效的产品开发

可在短时间内接受新的挑战。
通过 LinkedIn 联系我
塑料金属电子集成、成本设计、GMP、人体工程学、中高容量设备和耗材、精益制造、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485

我们正在寻找新的赞助商

 

您的公司或机构从事技术、科学或研究吗?
> 给我们发送消息 <

接收所有新文章
免费,无垃圾邮件,电子邮件不分发也不转售

或者您可以免费获得完整会员资格以访问所有受限制的内容>这里<

历史背景

(如果日期不详或不相关,例如 "流体力学",则对其显著出现的时间作了四舍五入的估计)。

相关发明、创新和技术原理

滚动至顶部

你可能还喜欢