» 气动力中的动压力

气动力中的动压力

1910
  • Otto Lilienthal
  • Wright brothers
  • Ludwig Prandtl
Aerodynamic testing facility with wind tunnel and model aircraft wing for aeronautical engineering.

Aerodynamic forces, such as lift and drag, on an object are directly proportional to the dynamic 压力 of the surrounding fluid. The formulas are [latex]L = C_L \cdot q \cdot A[/latex] and [latex]D = C_D \cdot q \cdot A[/latex], where [latex]C_L[/latex] and [latex]C_D[/latex] are the dimensionless lift and drag coefficients, [latex]q[/latex] is the dynamic pressure, and [latex]A[/latex] is a reference area.

The use of dynamic pressure to define aerodynamic forces is a cornerstone of aeronautical engineering, enabling a powerful method of analysis called dimensional analysis. By expressing lift and drag in terms of dynamic pressure ([latex]q[/latex]), a reference area ([latex]A[/latex]), and a dimensionless coefficient ([latex]C_L[/latex] or [latex]C_D[/latex]), engineers can separate the effects of fluid properties and speed from the effects of the object’s shape. The coefficients [latex]C_L[/latex] and [latex]C_D[/latex] depend primarily on the shape of the body, its orientation to the flow (angle of attack), and the 雷诺数马赫数. This separation is incredibly useful. For example, a scale model of an aircraft can be tested in a wind tunnel, and the measured lift and drag coefficients can be used to accurately predict the forces on the full-scale aircraft under different flight conditions (different altitudes, hence different densities, and different speeds).

A critical application of this concept in aerospace is the notion of “Max Q,” which refers to the point during a spacecraft’s atmospheric ascent where it experiences the maximum dynamic pressure. As a rocket accelerates, its speed ([latex]u[/latex]) increases, causing [latex]q[/latex] to rise. Simultaneously, as it gains altitude, the atmospheric density ([latex]\rho[/latex]) decreases, causing [latex]q[/latex] to fall. The combination of these two opposing effects results in a peak value for dynamic pressure. This is a moment of maximum mechanical stress on the vehicle, and its structure must be designed to withstand these loads. Throttling down the engines around Max Q is a common strategy to reduce these stresses and ensure the vehicle’s structural integrity.

UNESCO Nomenclature: 3301
– Aeronautical engineering and technology

类型

抽象系统

中断

基础

使用方法

广泛使用

前体

  • Bernoulli’s principle
  • 动压的定义
  • Newton’s laws of motion and fluid resistance concepts
  • 乔治·凯利等先驱者对翼型的早期实验

应用

  • 飞机机翼和机身设计
  • 汽车和赛车车身造型以提高下压力和效率
  • 用于发电的涡轮叶片设计
  • 船舶和游艇的帆设计
  • 射弹轨迹分析(弹道学)
  • 建筑物稳定性的风工程

专利:

NA

潜在的创新想法

级别需要会员

您必须是!!等级!!会员才能访问此内容。

立即加入

已经是会员? 在此登录
Related to: aerodynamics, lift, drag, dynamic pressure, lift coefficient, drag coefficient, airfoil, fluid dynamics, aeronautical engineering, max q.

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

迎接新挑战
机械工程师、项目、工艺工程师或研发经理
有效的产品开发

可在短时间内接受新的挑战。
通过 LinkedIn 联系我
塑料金属电子集成、成本设计、GMP、人体工程学、中高容量设备和耗材、精益制造、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485

我们正在寻找新的赞助商

 

您的公司或机构从事技术、科学或研究吗?
> 给我们发送消息 <

接收所有新文章
免费,无垃圾邮件,电子邮件不分发也不转售

或者您可以免费获得完整会员资格以访问所有受限制的内容>这里<

历史背景

(如果日期不详或不相关,例如 "流体力学",则对其显著出现的时间作了四舍五入的估计)。

相关发明、创新和技术原理

滚动至顶部

你可能还喜欢