High-precision CNC machines employ a 闭环 control system to ensure accuracy. This system uses feedback devices, such as rotary encoders on servomotors or linear scales on the machine axes, to continuously monitor the machine’s actual position. The controller compares this real-time feedback with the commanded position from the program and makes immediate corrections, compensating for errors.
Closed-Loop Control in CNC Systems

A closed-loop control system is a fundamental concept in automation that provides a high degree of accuracy and reliability, which is critical in CNC applications. Its counterpart, the open-loop system, is simpler and less expensive, typically using stepper motors. In an open-loop system, the controller sends a command (e.g., ‘move 100 steps’) to the 发动机 and assumes the action is completed perfectly, with no way to verify the outcome. This can lead to inaccuracies if the motor stalls, loses steps due to high load, or if there are mechanical imperfections like backlash in the drive screws.
In contrast, a closed-loop system ‘closes the loop’ with a feedback signal. The primary components are the controller, the actuator (typically a servomotor), and a feedback sensor (an encoder or scale). The controller sends a motion command to the servomotor. The encoder, which is physically coupled to the motor’s shaft or the machine’s moving axis, measures the actual movement and sends a stream of position data back to the controller. The controller’s logic, often a PID (Proportional-Integral-Derivative) algorithm, constantly calculates the ‘following error’—the difference between the commanded position and the actual position reported by the encoder. If an error is detected, the controller adjusts the signal to the motor to correct the discrepancy in real-time. This continuous process of command, measurement, comparison, and correction allows the system to compensate for dynamic variables like tool pressure, thermal expansion of machine components, and mechanical wear, resulting in significantly higher precision and repeatability than is possible with open-loop systems.
类型
中断
使用方法
前体
- the invention of the servomechanism
- development of control theory, including the PID controller
- invention of position feedback devices like rotary and linear encoders
- availability of microprocessors capable of real-time 信号处理
应用
专利:
迎接新挑战
机械工程师、项目、工艺工程师或研发经理
可在短时间内接受新的挑战。
通过 LinkedIn 联系我
塑料金属电子集成、成本设计、GMP、人体工程学、中高容量设备和耗材、精益制造、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485
相关发明、创新和技术原理