» 产品设计 » 人工智能促进产品设计和创新 » 最佳科学与工程 AI 提示目录

最佳科学与工程 AI 提示目录

AI提示

产品设计与创新领域最大的人工智能提示目录

产品设计的 Ai 提示
这是一个全面的 AI 提示目录,旨在通过优化数据处理和解决方案生成,提高产品设计、工程和创新能力。

欢迎访问全球最大的人工智能提示目录,该目录致力于先进的产品设计、工程、科学、创新、质量和制造。虽然在线人工智能工具正在通过增强人类能力迅速改变工程领域,但其真正的威力是通过精确和专业的指令来释放的。本综合目录为您提供了一系列此类提示,使您能够指挥人工智能系统处理海量数据、识别复杂模式并生成新颖的解决方案,其效率远远超过传统方法。

发现并微调所需的准确提示,利用在线人工智能代理优化设计,以达到最佳性能和可制造性,加速复杂模拟,准确预测材料特性,并自动执行各种关键分析任务。
通过高级搜索过滤器可以快速访问这个内容广泛的目录,涵盖现代工程学的所有领域。

考虑到服务器资源和时间,提示信息本身仅供注册会员使用,如果您没有登录,则无法在下方看到。 您可以免费注册 100%: 

需要会员资格

您必须是会员才能访问此内容。

查看会员级别

已经是会员? 在此登录
按域过滤
按类别筛选
按人工智能输出格式筛选
按要求实时访问 Internet 筛选

人工智能提示 Hypothesize Causes of Catalyst Deactivation

This prompt generates plausible hypotheses explaining catalyst deactivation based on a list of observed symptoms such as activity loss, selectivity change, and physical catalyst changes. The AI provides a ranked list of hypotheses with brief mechanistic explanations.

输出: 

人工智能提示 Generate C++ Code for Heat Exchanger Design

This prompt generates a C++ program to calculate heat exchanger parameters such as heat transfer rate, log mean temperature difference, and required surface area based on user inputs of fluid temperatures, flow rates, and heat capacities. The code is fully commented and ready for compilation.

输出: 

人工智能提示 Generate Python Code for Reaction Rate Calculation

This prompt creates a Python script to calculate reaction rates based on Arrhenius kinetics, given user inputs of activation energy, pre-exponential factor, temperature, and concentration. The code includes comments and example usage, facilitating integration into chemical engineering workflows.

输出: 

人工智能提示 Create Catalyst Property Variations

This prompt generates plausible variations of catalyst property data given an initial dataset in CSV format. It outputs an augmented CSV with new catalyst entries created by applying small random perturbations to surface area, pore volume, and metal loading, useful for training robust machine learning models.

输出: 

人工智能提示 Retrieve Safety and Hazard Statements

This prompt scans a provided chemical process description or material safety document to extract all safety and hazard statements, including precautionary measures and hazard codes. The output is a bullet-point list in plain text for easy review and compliance checks.

输出: 

人工智能提示 Identify Catalyst Types and Properties

This prompt identifies all catalyst types mentioned in a given technical document excerpt and extracts their key properties such as surface area, pore volume, and active metal loading. The AI outputs a neatly formatted markdown table listing each catalyst and its properties to facilitate catalyst comparison and selection.

输出: 

人工智能提示 Extract Experimental Parameters from Text

This prompt extracts key experimental parameters such as temperature, pressure, catalyst type, and reaction time from a provided unstructured text excerpt of a chemical engineering report or paper. It outputs a structured JSON summarizing each parameter with its value and units, helping engineers quickly gather critical data without manual reading.

输出: 

人工智能提示 Troubleshoot Packed Column Flooding

A packed distillation or absorption column is experiencing flooding. Given column internals packing type fluid properties (gas/liquid loads) operating conditions and observed symptoms (e.g. high pressure drop entrainment poor separation) this prompt asks the AI to suggest causes and diagnostic checks.

输出: 

人工智能提示 Simulate Reactor SteadyState Yields

This prompt generates a conceptual table of expected product yields from a specified chemical reactor type under varying steady-state operating conditions (e.g. temperature pressure catalyst concentration). It relies on general chemical engineering principles and user-provided qualitative impact of conditions. This is for conceptual design or educational exploration not rigorous simulation.

输出: 

人工智能提示 Extract Catalyst Performance Data URL

This prompt tasks the AI with scraping a given URL of a research article or patent that discusses catalysis. It should identify and extract specific data related to catalyst performance such as conversion selectivity turnover number (TON) turnover frequency (TOF) and reaction conditions under which these were achieved for a named catalyst or reaction system. The output is a JSON object.

输出: 

目录
    添加标题以开始生成目录

    迎接新挑战
    机械工程师、项目、工艺工程师或研发经理
    有效的产品开发

    可在短时间内接受新的挑战。
    通过 LinkedIn 联系我
    塑料金属电子集成、成本设计、GMP、人体工程学、中高容量设备和耗材、精益制造、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485

    我们正在寻找新的赞助商

     

    您的公司或机构从事技术、科学或研究吗?
    > 给我们发送消息 <

    接收所有新文章
    免费,无垃圾邮件,电子邮件不分发也不转售

    或者您可以免费获得完整会员资格以访问所有受限制的内容>这里<

    涵盖的主题: 测试提示、验证、用户输入、数据收集、反馈机制、互动测试、调查设计、可用性测试、软件评估、实验设计、性能评估、问卷调查、ISO 9241、ISO 25010、ISO 20282、ISO 13407 和 ISO 26362。

    1. 莱克西-佩尼亚

      没有人讨论这些目录在人工智能选择方面可能存在的偏见吗?人工智能无法避免偏见,各位。

    发表评论

    您的邮箱地址不会被公开。 必填项已用 * 标注

    历史背景

    (如果日期不详或不相关,例如 "流体力学",则对其显著出现的时间作了四舍五入的估计)。

    相关文章

    滚动至顶部