» 电气工程最佳人工智能提示

电气工程最佳人工智能提示

人工智能推动电气工程
电气工程的 Ai 提示
人工智能驱动的工具通过先进的数据分析和生成式设计技术,提高了设计效率、仿真精度和预测性维护能力,为电气工程带来了革命性的变化。

在线人工智能工具通过增强人类在电路设计、系统分析和电子学方面的能力,正在迅速改变电气工程。 制造业以及电力系统维护。这些人工智能系统可以处理大量的仿真数据、传感器读数和网络流量,识别复杂的异常或性能瓶颈,并以比传统方法更快的速度生成新的电路拓扑结构或控制算法。例如,人工智能可以帮助您优化 PCB 布局以实现信号完整性和可制造性,加速复杂的电磁或功率流仿真,预测半导体器件特性,并自动执行一系列广泛的任务。 信号处理 和数据分析任务。

例如,下面提供的提示有助于天线或滤波器的生成式设计、加速仿真(SPICE、电磁场仿真、电力系统稳定性分析)、帮助进行预测性维护(人工智能通过分析电力变压器或电网组件的传感器数据来预测潜在故障,从而实现主动服务并最大限度地减少停机时间)、帮助进行半导体材料选择或最佳组件选择(例如,针对特定参数选择最佳运算放大器)等等。

  • 考虑到服务器资源和时间,提示信息本身仅供注册会员使用,如果您没有登录,则无法在下方看到。 您可以免费注册 100%: 

需要会员资格

您必须是会员才能访问此内容。

查看会员级别

已经是会员? 在此登录

人工智能提示 文献综述 提纲 论文

生成电气工程特定领域博士论文的结构化文献综述大纲。它有助于组织背景研究,确定关键主题和知识缺口。

输出: 

				
					You are an AI assistant skilled in research methodology and scientific writing for Electrical Engineering doctoral candidates.
**Objective:** Generate a structured literature review outline for a PhD thesis on a given electrical engineering topic.

**Thesis Information:**
- Thesis Topic Statement: `{thesis_topic_statement}` (A concise statement of the main research topic/problem).
- Key Sub-Topics or Areas to Cover: `{key_subtopics_or_areas_list}` (Comma-separated list of specific technologies concepts or theoretical areas that MUST be included).
- Desired Number of Main Sections: `{number_of_main_sections}` (An integer e.g. 3 4 or 5 for the main thematic sections of the review).

**Task:**
Create a detailed literature review outline in MARKDOWN format. The outline MUST:
1.  Start with an Introduction section (briefly stating scope and objectives of the review).
2.  Be divided into the `{number_of_main_sections}` main thematic sections. For each main section:
    *   Suggest a clear heading.
    *   List 3-5 key sub-points or questions that should be addressed within it relating to the `{key_subtopics_or_areas_list}` where appropriate.
    *   Identify potential seminal works or types of studies to include (if general knowledge allows).
3.  Include a section on 'Synthesis and Identified Research Gaps' that logically follows from the thematic sections.
4.  Conclude with a brief Summary section.
5.  Ensure a logical flow from foundational concepts to more specific or advanced topics leading towards the research gap your thesis aims to address.

**Example Structure for a Main Section (Illustrative):**
### 2.0 Main Thematic Section Title
    2.1 Sub-point: Foundational theories and principles
    2.2 Sub-point: Key technologies and historical developments
    2.3 Sub-point: Current state-of-the-art and limitations
    2.4 Sub-point: Comparative analysis of different approaches

**IMPORTANT:**
- The outline should provide a clear roadmap for writing the literature review.
- Focus on creating a coherent narrative that justifies the research described in the `{thesis_topic_statement}`.
- The detail should be sufficient to guide the student's reading and writing process.
							

人工智能提示 为行业杂志改编学术论文

将电气工程学术研究论文中的部分内容改编成更通俗易懂、更吸引人的文章,适合行业杂志或贸易出版物。这包括简化专业术语,注重实际意义,突出与现实世界的相关性。结果是一篇文本文章。

输出: 

				
					Act as a Technical Writer and Editor for engineering publications.
Your TASK is to adapt the provided `{academic_paper_section_text}` (e.g.
 Introduction
 Methodology
 Results
 or Conclusion of a research paper) into an article format suitable for a `{target_industry_magazine_name_or_type}` (e.g.
 'Power Systems Design Today'
 'RF Journal for Practitioners'
 'Embedded Control Monthly').
The adapted article should emphasize the `{key_takeaway_for_industry_professionals}` and be written in a more accessible and engaging style than a typical academic paper.

**ADAPTATION GUIDELINES:**

1.  **Understand Target Audience & Publication Style**: 
    *   Consider the typical reader of `{target_industry_magazine_name_or_type}`. They are likely practicing engineers
 managers
 or technicians looking for practical insights
 new solutions
 or industry trends
 rather than deep academic theory.
    *   Adopt a more direct
 slightly less formal
 and more applied tone compared to the `{academic_paper_section_text}`.
2.  **Headline/Title (Suggest one for the adapted piece)**:
    *   Create an engaging title that reflects the `{key_takeaway_for_industry_professionals}` and would attract readers of the target magazine.
3.  **Introduction/Opening**:
    *   Start with a hook that highlights a real-world problem
 challenge
 or opportunity relevant to the industry and the `{key_takeaway_for_industry_professionals}`.
    *   Briefly introduce the core idea or finding from the `{academic_paper_section_text}` as a potential solution or important development.
4.  **Simplify Technical Jargon and Complex Explanations**:
    *   Translate highly academic or specialized terminology into more common engineering language.
    *   If a complex concept must be mentioned
 explain it concisely in simple terms
 perhaps using an analogy if appropriate.
    *   Break down long sentences and dense paragraphs.
5.  **Focus on Practical Implications and Applications**:
    *   Emphasize HOW the research/findings from `{academic_paper_section_text}` can be applied in the industry.
    *   What are the potential benefits
 efficiencies
 cost savings
 or new capabilities it could enable?
    *   Use bullet points or short case examples if they help illustrate practical points.
6.  **Results and Evidence (if applicable to the section)**:
    *   If the `{academic_paper_section_text}` includes results
 present them in a way that highlights their significance for practice. Focus on key outcomes rather than exhaustive data.
    *   Consider if simple charts or figures would normally be used here (though you will only output text
 you can describe what a figure would show).
7.  **Address the `{key_takeaway_for_industry_professionals}` Explicitly**:
    *   Ensure this key message is clearly conveyed and reinforced throughout the adapted article.
8.  **Conclusion/Outlook**:
    *   Summarize the main points from an industry perspective.
    *   Briefly discuss potential future developments or how this work might evolve into practical solutions or standards.
    *   End with a forward-looking statement or a call to consider the implications.

**Output Format:**
Plain text
 structured as a short article with clear paragraphs and potentially subheadings (which you should create).

**Example Transformation (Conceptual):**
    *   _Academic Tone_: "The novel quasi-resonant zero-voltage-switching topology presented herein demonstrates a quantifiable reduction in switching losses
 theoretically validated through state-plane analysis and corroborated by empirical evidence from a 1kW prototype operating at 2 MHz
 achieving a peak efficiency of 98.7%."
    *   _Industry Magazine Tone_: "Engineers are constantly battling switching losses in power converters. A new design approach
 using quasi-resonant techniques with zero-voltage switching
 is showing exciting promise. Researchers have developed a topology that significantly cuts these losses. In a 1kW prototype running at a challenging 2 MHz
 this new method boosted peak efficiency to an impressive 98.7%
 paving the way for more compact and cooler-running power supplies."

**IMPORTANT**: The adapted article must remain faithful to the technical essence of the `{academic_paper_section_text}` but make it much more digestible and relevant for industry practitioners.
							

人工智能提示 为会议介绍改编报告

根据特定的会议指南,将技术报告摘录改编为引人入胜的会议论文引言。这充分利用了在线资源,有效地调整了内容。

输出: 

				
					You are an AI assistant specialized in academic writing for Electrical Engineering conferences.
**Objective:** Adapt an excerpt from a technical report to serve as a compelling introduction for a conference paper targeting a specific conference.

**Input Materials:**
- Technical Report Excerpt: `{technical_report_excerpt}` (Paste the text from the report that contains relevant background problem statement and motivation).
- Conference Name and Theme: `{conference_name_and_theme}` (e.g. 'IEEE Power & Energy Society General Meeting - Theme: Decarbonization and Grid Modernization').
- Conference Author Guidelines URL: `{conference_author_guidelines_url}` (Link to the specific conference's author guidelines page focusing on introduction structure word limits etc.).

**Task:**
1.  **Access and Review Guidelines:** Carefully review the author guidelines provided via the `{conference_author_guidelines_url}` particularly sections related to the introduction length focus and required elements.
2.  **Draft the Introduction:** Rewrite and restructure the `{technical_report_excerpt}` to create a conference paper introduction that:
    *   Clearly establishes the context and motivation for the research relevant to the `{conference_name_and_theme}`.
    *   States the problem being addressed and its significance.
    *   Briefly outlines the approach or contribution of the paper.
    *   Concludes with a roadmap of the paper (if customary for the conference).
    *   Adheres to any length constraints or specific structural advice from the guidelines.
3.  **Tone and Focus:** Ensure the tone is appropriate for a conference presentation (often more direct and concise than a technical report). Emphasize novelty and relevance to the conference audience.

**Output Format:**
Provide the drafted conference paper introduction as plain text.

**IMPORTANT:**
- The introduction MUST be tailored to the specific `{conference_name_and_theme}` and adhere to the `{conference_author_guidelines_url}`.
- If the guidelines are extensive summarize key constraints you adhered to before presenting the draft.
- The goal is to make the research accessible and engaging for conference attendees.
							

人工智能提示 氮化镓功率器件最近 3 年的发展趋势

总结了过去三年氮化镓(GaN)功率半导体器件的主要进展和应用趋势,重点介绍了性能改进、新应用领域和市场采用情况。这有助于电气工程师了解这一快速发展技术的最新情况。输出为一份降价报告。

输出: 

				
					Act as a Semiconductor Industry Analyst specializing in Power Electronics.
Your TASK is to provide a summary of key advancements and application trends for Gallium Nitride (GaN) power semiconductor devices over approximately the last three years (from current date backward).
The review should cover `{specific_application_focus_or_all}` (e.g.
 'Data Center Power Supplies'
 'Electric Vehicle (EV) On-Board Chargers'
 'Consumer Electronics Fast Chargers'
 'LIDAR'
 or 'All Major Applications').
It should highlight progress in `{performance_metrics_of_interest_csv}` (e.g.
 'Figure_of_Merit_Ron_Q
Switching_Frequency_MHz
Voltage_Rating_V
Efficiency_Improvements_percent
Power_Density_W_cm3
Integration_Level_e.g._SoC_SiP').
Indicate if market adoption trends should be included via `{include_market_adoption_trends_boolean}` (True/False).
You MUST use live internet access to gather the latest information from reputable industry news
 technical journals
 conference proceedings
 and market research summaries.

**SUMMARY REPORT: GaN Power Device Trends (Last 3 Years)**

**1. Executive Summary:**
    *   Brief overview of GaN technology's trajectory in the last three years
 highlighting its growing importance in power electronics.
    *   Mention key drivers for adoption (e.g.
 efficiency
 power density
 cost reduction).

**2. Key Performance Metric Advancements (referencing `{performance_metrics_of_interest_csv}`):**
    *   **Figure of Merit (FOM
 e.g.
 R_on * Q_g)**: Discuss improvements in GaN device FOM
 leading to lower switching and conduction losses.
    *   **Switching Frequency**: Trends in achievable switching frequencies and how this impacts system size/passives.
    *   **Voltage Rating**: Availability of higher voltage GaN devices (e.g.
 650V
 900V
 1200V) and their impact on applications.
    *   **Efficiency Improvements**: Cite examples or typical improvements in converter/inverter efficiencies attributed to GaN.
    *   **Power Density**: How GaN is enabling significant increases in power density (W/volume or W/weight).
    *   **Integration Level**: Advancements in GaN ICs
 System-in-Package (SiP)
 or co-packaging with drivers/controllers.
    *   **Reliability & Robustness**: Progress made in understanding and improving GaN device reliability
 gate drive stability
 and short-circuit withstand capabilities.

**3. Application Area Developments (`{specific_application_focus_or_all}`):**
    *(If 'All Major Applications'
 cover 2-3 prominent ones. If specific
 focus on that.)*
    *   **[Application Area 1
 e.g.
 Consumer Fast Chargers]:**
        *   How GaN is impacting this area (e.g.
 smaller size
 higher power output).
        *   Notable product releases or design wins.
        *   Specific GaN device types being adopted.
    *   **[Application Area 2
 e.g.
 Data Center PSUs]:**
        *   Benefits of GaN (e.g.
 meeting 80 Plus Titanium/Platinum efficiency
 higher density for server racks).
        *   Challenges and solutions for GaN in this space.
    *   **[Application Area 3
 e.g.
 Automotive (EV OBCs
 DC/DC
 LiDAR)]:**
        *   GaN's role in improving EV range
 charging speed
 and system cost/weight.
        *   Qualification status and adoption by automotive OEMs.
        *   Use in LiDAR for autonomous driving.

**4. Key Technology & Manufacturing Trends:**
    *   Advancements in GaN-on-Si epitaxy and manufacturing processes leading to cost reduction and higher yields.
    *   Development of new device structures (e.g.
 vertical GaN
 novel gate structures).
    *   Improved packaging technologies for better thermal performance and lower inductance at high frequencies.

**5. Market Adoption and Commercialization (if `{include_market_adoption_trends_boolean}` is True):**
    *   Overview of market growth for GaN power devices.
    *   Key industry players (device manufacturers
 foundries).
    *   Price trends and competitiveness with Silicon MOSFETs and SiC devices.
    *   Major investments
 partnerships
 or acquisitions in the GaN space.

**6. Remaining Challenges and Future Outlook:**
    *   Persistent challenges (e.g.
 cost for some applications
 gate drive complexity
 long-term reliability data for newer applications
 thermal management at extreme power densities).
    *   Expected future developments and potential new markets for GaN technology in the next 3-5 years.

**Sources**: This review is based on publicly available industry reports
 technical publications
 and news articles from the last three years accessed via the internet.

**IMPORTANT**: The report should be well-structured
 factual
 and provide a balanced view. Cite specific examples or data points where possible (without needing formal citations
 e.g.
 "Company X announced a GaN IC achieving Y performance...").
							

人工智能提示 批评 EMI 屏蔽实验

对测试印刷电路板 EMI 屏蔽效果的实验计划提出批评,建议改进有效性和可靠性。它有助于工程师改进测试程序,以获得更可靠的结果。

输出: 

				
					You are an AI assistant with expertise in Experimental Design and Electromagnetic Compatibility (EMC) for Electrical Engineers.
**Objective:** Critique a provided experimental plan for testing Printed Circuit Board (PCB) Electromagnetic Interference (EMI) shielding effectiveness and suggest improvements.

**Experimental Plan Details:**
- Experimental Setup Description: `{experimental_setup_description}` (Describe the test environment equipment used source of interference shield configuration device under test DUT).
- Measurement Parameters (CSV format): `{measurement_parameters_csv}` (Columns: ParameterName ValueUnit FrequencyRange Resolution). Example: 'ShieldingEffectiveness dB 20Hz-1GHz 1kHz'.
- Expected Results Summary: `{expected_results_summary}` (Briefly state what the experiment aims to demonstrate or measure e.g. 'Shielding effectiveness > 20dB across the specified frequency range').

**Task:**
Generate a critique of the experimental plan in MARKDOWN format. Your critique MUST cover:
1.  **Validity Assessment:**
    *   Does the setup accurately simulate real-world conditions or the intended application?
    *   Are the measurement parameters appropriate for assessing shielding effectiveness?
    *   Are there any uncontrolled variables that could affect the results?
2.  **Reliability Assessment:**
    *   Is the procedure detailed enough for repeatability?
    *   Are there sufficient data points or repetitions planned?
    *   What are the potential sources of measurement error and how can they be minimized?
3.  **Suggestions for Improvement:**
    *   Propose specific changes to the setup parameters or procedure to enhance validity reliability or efficiency.
    *   Suggest any missing control experiments or calibration steps.
    *   Comment on the interpretation of `{expected_results_summary}` and if the parameters can truly validate it.

**IMPORTANT:**
- Your critique should be constructive and provide actionable recommendations.
- Focus on best practices in EMC testing and experimental design for electrical engineering.
- Ensure the output is well-structured MARKDOWN.
							

人工智能提示 无线电力传输领域的开创性专利

确定并总结无线功率传输 (WPT) 技术特定领域的关键开创性专利,突出其核心创新和对该领域的影响。这有助于工程师了解基础性知识产权状况。输出为 CSV 专利列表。

输出: 

				
					Act as a Patent Technology Scout specializing in Electrical Engineering innovations.
Your TASK is to identify and summarize key/seminal patents related to `{wpt_technology_focus}` (e.g.
 'Resonant Inductive Coupling for EV Charging'
 'Near-Field Capacitive WPT'
 'Microwave Power Beaming for Drones'
 'Ultrasonic WPT for Medical Implants').
Optionally
 filter by `{application_area_filter_optional}` (e.g.
 'Automotive'
 'Consumer Electronics'
 'Medical Devices'
 'Industrial Automation') if specified.
Aim to find approximately `{number_of_patents_to_find}` significant patents. This may include foundational patents or highly cited ones that introduced key concepts.
You MUST use live internet access to search patent databases (e.g.
 Google Patents
 USPTO
 Espacenet).

**PATENT IDENTIFICATION AND SUMMARY (Output as CSV String):**

**CSV Header**: `Patent_Number
Title
Publication_Date
Assignee_Original
Key_Inventors
Core_Innovation_Summary
Perceived_Impact_or_Significance
Patent_URL`

**Search and Analysis Process:**
1.  **Keyword Formulation**: Develop search queries based on `{wpt_technology_focus}`
 relevant technical terms
 and potentially `{application_area_filter_optional}`.
2.  **Database Search**: Query patent databases. Look for patents with early priority dates for foundational concepts
 or those with high citation counts
 or those frequently referenced in review articles on WPT.
3.  **Patent Review**: For promising candidates
 review the abstract
 claims (especially independent claims)
 and description to understand the core innovation.
4.  **Selection**: Select up to `{number_of_patents_to_find}` patents that appear most seminal or impactful based on their claims
 problem solved
 and influence (e.g.
 if they enabled a new product category or solved a major technical hurdle).

**Data Extraction for each selected patent:**
    *   **Patent Number**: (e.g.
 USXXXXXXX B2)
    *   **Title**: Full title of the patent.
    *   **Publication Date**: Date of grant or first major publication.
    *   **Assignee (Original)**: The company or institution it was originally assigned to.
    *   **Key Inventors**: List one or two primary inventors if easily identifiable.
    *   **Core Innovation Summary**: A concise (1-2 sentences) explanation of what the patent claims as its main invention in the context of `{wpt_technology_focus}`.
    *   **Perceived Impact or Significance**: Why is this patent considered important or seminal? (e.g.
 'Pioneered the use of coupled magnetic resonators for mid-range WPT'
 'Solved a key safety/efficiency issue'
 'Underpins many commercial WPT charging systems').
    *   **Patent URL**: A direct link to view the patent (e.g.
 Google Patents link).

**Example CSV Row (Conceptual):**
`US7741734B2
Wireless power transfer systems
2010-06-22
WiTricity Corporation
Kurs
 Andre; Karalis
 Aristeidis
Utilizes coupled resonant objects to efficiently transfer power over mid-range distances without direct contact
 a key enabler for resonant inductive WPT technology.
Seminal patent for mid-range resonant WPT
 heavily licensed and cited.
https://patents.google.com/patent/US7741734B2`

**IMPORTANT**: The selection of "seminal" can be subjective. Focus on patents that introduced foundational concepts or had a clear and demonstrable impact on the field of `{wpt_technology_focus}`. Provide direct URLs to the patent documents.
							

人工智能提示 AI/ML 在电力系统故障诊断中的应用前景

调查了人工智能/机器学习在电力系统故障诊断中的应用研究情况,确定了所使用的主要人工智能/机器学习技术、所处理的故障类型、所使用的数据集以及当前的研究挑战。这有助于电力系统工程师了解该领域的最新进展。输出是一份标记报告。

输出: 

				
					Act as a Research Analyst specializing in AI/ML applications in Power Systems Engineering.
Your TASK is to provide a concise review of the research landscape concerning the application of Artificial Intelligence (AI) and Machine Learning (ML) techniques for Power System Fault Diagnosis.
The review should cover approximately the last `{time_period_for_review_years}` years.
Optionally
 narrow the focus to `{specific_fault_type_focus_optional}` (e.g.
 'Transmission Line Faults'
 'Transformer Incipient Faults'
 'Underground Cable Faults') OR `{specific_ai_ml_technique_focus_optional}` (e.g.
 'Deep Learning (CNNs
 RNNs)'
 'Support Vector Machines (SVM)'
 'Ensemble Methods'). If both are blank
 provide a general overview.
You MUST use live internet access to survey recent scholarly literature from IEEE Xplore
 ScienceDirect
 Google Scholar
 etc.

**RESEARCH LANDSCAPE REPORT (Markdown format):**

**1. Introduction:**
    *   Briefly define power system fault diagnosis and its importance.
    *   State the increasing role of AI/ML in this domain
 aiming to improve speed
 accuracy
 and automation.
    *   Specify the scope of this review (general
 or focused on `{specific_fault_type_focus_optional}` / `{specific_ai_ml_technique_focus_optional}`).

**2. Dominant AI/ML Techniques Employed:**
    *   Identify and discuss the most frequently used AI/ML algorithms. Examples:
        *   Artificial Neural Networks (ANNs
 MLPs)
        *   Deep Learning (Convolutional Neural Networks - CNNs for waveform/image data
 Recurrent Neural Networks - RNNs/LSTMs for time-series data)
        *   Support Vector Machines (SVM)
        *   Decision Trees and Ensemble Methods (Random Forests
 Gradient Boosting)
        *   Fuzzy Logic Systems
        *   Expert Systems (knowledge-based).
    *   Briefly explain why certain techniques are favored for particular aspects of fault diagnosis (e.g.
 CNNs for feature extraction from raw data).

**3. Types of Faults Addressed:**
    *   What kinds of faults are being diagnosed using AI/ML? (If not specified by `{specific_fault_type_focus_optional}`
 cover a range):
        *   Transmission lines: Symmetrical/unsymmetrical faults
 fault location.
        *   Transformers: Incipient faults (e.g.
 DGA analysis)
 winding faults.
        *   Generators
 Motors
 Cables
 Switchgear.
        *   High-impedance faults.

**4. Input Features and Datasets:**
    *   What types of data are commonly used as input for AI/ML models?
        *   Electrical measurements: Voltage
 current waveforms (raw or processed into phasors
 symmetrical components
 wavelet coefficients
 spectral features).
        *   Operational data: Relay trip signals
 switch status.
        *   Non-electrical data: Dissolved Gas Analysis (DGA) for transformers
 thermal images
 acoustic signals.
    *   Are publicly available datasets commonly used
 or do researchers primarily rely on simulation data (e.g.
 PSCAD
 EMTP-RV
 MATLAB/Simulink) or utility-specific private data? Mention challenges related to data availability and quality.

**5. Key Research Themes and Recent Advancements (within last `{time_period_for_review_years}` years):**
    *   Emphasis on real-time diagnosis and faster algorithms.
    *   Improving robustness to noise
 varying system conditions
 and unseen fault types.
    *   Explainable AI (XAI) in fault diagnosis: Understanding why AI models make certain decisions.
    *   Online learning and adaptive models.
    *   Application of AI/ML for fault location in addition to detection and classification.
    *   Integration with Wide Area Monitoring Systems (WAMS) using PMU data.

**6. Current Challenges and Open Research Questions:**
    *   Data scarcity and imbalance (fault data is rare compared to normal operation data).
    *   Generalization capability of models across different power system topologies and operating conditions.
    *   Cybersecurity of AI-based diagnostic systems.
    *   Computational requirements for complex deep learning models in real-time applications.
    *   Standardization and benchmarking of AI/ML solutions for fault diagnosis.

**7. Conclusion and Future Outlook:**
    *   Summarize the progress and the promising future of AI/ML in power system fault diagnosis.
    *   Potential for integration into next-generation grid management and automation.

**Sources**: This review is based on a survey of scholarly articles and conference proceedings accessed via the internet for the specified period.

**IMPORTANT**: The report should be well-organized and provide a snapshot of the current research activities. Cite general trends and common approaches rather than exhaustive lists of individual papers.
							

人工智能提示 摘要中的太赫兹通信知识差距

分析了太赫兹(THz)通信系统的最新研究摘要集,以确定潜在的知识差距或未来研究中尚未充分开发的领域。这有助于射频和通信工程师确定这一前沿领域的新研究问题。输出为标记符列表。

输出: 

				
					Act as a Senior Researcher in Wireless Communications
 specializing in Terahertz (THz) systems.
Your TASK is to analyze the provided `{collection_of_thz_abstracts_text}` (a block of text containing several recent research paper abstracts on THz communications) to identify potential knowledge gaps
 unanswered questions
 or underexplored aspects that could suggest avenues for future research.
The analysis should consider the general `{thz_communication_application_focus}` (e.g.
 'Indoor ultra-high-speed wireless links'
 'Inter-satellite communications'
 'Non-destructive testing and imaging'
 'Wireless backhaul/fronthaul')
 and optionally focus on a `{specific_sub_topic_for_gap_analysis_optional}` (e.g.
 'Channel modeling in dynamic environments'
 'Low-complexity transceiver architectures'
 'Beamforming and tracking at THz frequencies'
 'Metamaterials for THz beam manipulation').

**ANALYSIS OF KNOWLEDGE GAPS (Markdown format):**

**Research Area**: Terahertz (THz) Communication Systems
**Application Focus**: `{thz_communication_application_focus}`
**Specific Sub-topic for Gap Analysis (if any)**: `{specific_sub_topic_for_gap_analysis_optional}`

**1. Overview of Current Research Themes (from provided abstracts):**
    *   Briefly summarize the dominant topics
 methodologies
 and key findings presented in the `{collection_of_thz_abstracts_text}`. What are researchers currently focusing on in THz comms based on this sample?

**2. Identified Potential Knowledge Gaps / Future Research Questions:**
    *(Based on your analysis of the abstracts
 list and explain potential gaps. Ensure these are logically derived from the provided text or clear omissions when considering the application focus.)*
    *   **Gap/Question 1: [Specific Gap Title
 e.g.
 'Impact of Atmospheric Absorption Windows on Multi- kilómetros THz Links for `{thz_communication_application_focus}`']**
        *   **Reasoning based on abstracts**: [e.g.
 "While several abstracts discuss component performance at specific THz frequencies
 few seem to analyze the link budget and SNR over practical long distances considering realistic atmospheric attenuation windows and their variability
 which is critical for `{thz_communication_application_focus}`."]
        *   **Potential Research Direction**: [e.g.
 "Develop comprehensive channel models incorporating detailed molecular absorption and weather effects for various THz bands suitable for `{thz_communication_application_focus}`
 and evaluate system performance."]
    *   **Gap/Question 2: [Specific Gap Title
 e.g.
 'Scalable and Energy-Efficient Beamforming ICs for Large THz Arrays']**
        *   **Reasoning based on abstracts**: [e.g.
 "Abstracts X and Y propose novel beamforming algorithms
 but there's limited discussion on the practical realization of low-power
 cost-effective integrated circuits to implement these for large arrays needed for `{thz_communication_application_focus}`
 especially when considering the `{specific_sub_topic_for_gap_analysis_optional}` if it relates to transceivers."]
        *   **Potential Research Direction**: [e.g.
 "Design and prototype CMOS or SiGe BiCMOS beamforming ICs for THz frequencies that address power consumption
 chip area
 and calibration challenges for arrays with >64 elements."]
    *   **Gap/Question 3: [Specific Gap Title
 e.g.
 'Real-time THz Channel Emulation for Dynamic Scenarios']**
        *   **Reasoning based on abstracts**: [e.g.
 "Many abstracts present simulation results using static or simplified channel models. There appears to be a lack of research on hardware channel emulators or highly realistic software models that can replicate dynamic THz channel conditions (e.g.
 mobility
 blockage) for `{thz_communication_application_focus}`
 which is crucial for testing higher-layer protocols."]
        *   **Potential Research Direction**: [e.g.
 "Develop a framework and hardware/software co-design for a THz channel emulator capable of reproducing time-varying characteristics for scenarios relevant to `{thz_communication_application_focus}`."]
    *   **(Add more gaps as identified
 aiming for 3-5 key ones)**

**3. Overarching Themes for Future Exploration (Synthesized from Gaps):**
    *   Briefly synthesize if the identified gaps point towards broader areas needing more intensive research (e.g.
 'Practical channel characterization and modeling beyond ideal conditions'
 'Hardware co-design for THz-specific signal processing'
 'System-level integration and testing methodologies').

**IMPORTANT**: The identified gaps MUST be credibly linked to the information (or lack thereof) in the `{collection_of_thz_abstracts_text}`. The analysis should be insightful for researchers looking for novel contributions in THz communications. Tailor the gaps based on the specified application focus and sub-topic.
							

人工智能提示 高压电池测试设置危害分析

识别高压电池测试装置中潜在的电热化学和机械危险,并提出相应的缓解措施或安全协议。这有助于确保为使用电动汽车或电网规模电池的电气工程师提供安全的测试环境。输出为标记符格式的危险列表。

输出: 

				
					Act as a Battery Safety Engineer and High-Voltage Test Facility Manager.
Your TASK is to identify potential hazards and suggest mitigation measures for a test setup involving a High-Voltage (HV) battery.
The battery is specified by `{battery_chemistry_and_voltage}` (e.g.
 'Lithium-ion NMC
 400V nominal
 50Ah'
 'LiFePO4
 800V system
 200kW peak').
The test involves `{test_type_and_max_current_or_power}` (e.g.
 'Charge/Discharge Cycling up to 1C/100A'
 'Short Circuit Test with fault current limiter'
 'Performance testing at 150kW peak power').
The test occurs in `{test_environment_description}` (e.g.
 'Dedicated battery test cell with fire suppression and ventilation'
 'University lab bench with basic safety equipment'
 'Outdoor test rig').

**HAZARD ANALYSIS AND MITIGATION MEASURES (Markdown format):**

**Test Setup Context:**
*   **Battery**: `{battery_chemistry_and_voltage}`
*   **Test Type**: `{test_type_and_max_current_or_power}`
*   **Environment**: `{test_environment_description}`

**I. Electrical Hazards:**
    *   **1. High Voltage Shock/Electrocution:**
        *   **Hazard**: Direct contact with HV terminals
 busbars
 or exposed conductors (`{battery_chemistry_and_voltage}` implies lethal voltages).
        *   **Mitigation**:
            *   `[ ]` Use appropriately rated and insulated tools
 probes
 and connectors.
            *   `[ ]` Ensure all HV connections are shrouded or located within an interlocked safety enclosure.
            *   `[ ]` Wear certified HV insulating gloves and face shield/safety glasses.
            *   `[ ]` Implement clear lockout/tagout (LOTO) procedures for connecting/disconnecting the battery.
            *   `[ ]` Use a "one-hand rule" when working near potentially live circuits if enclosure is open (expert procedure).
            *   `[ ]` Ensure availability and proper function of safety interlocks on test fixtures/enclosures.
    *   **2. Arc Flash / Arc Blast:**
        *   **Hazard**: High-energy discharge due to short circuits
 accidental tool contact
 or insulation failure
 causing severe burns
 pressure waves
 and shrapnel.
        *   **Mitigation**:
            *   `[ ]` Perform an arc flash hazard assessment if current/energy levels from `{test_type_and_max_current_or_power}` are high.
            *   `[ ]` Wear appropriate Arc Flash PPE (suit
 hood
 gloves) if assessment dictates.
            *   `[ ]` Use non-conductive barriers and maintain safe approach distances.
            *   `[ ]` Ensure test equipment (e.g.
 power supplies
 loads) has fast-acting overcurrent protection.
            *   `[ ]` Implement current-limiting resistors or fuses in test setup where appropriate
 especially for `{test_type_and_max_current_or_power}` like short circuit tests.
    *   **3. Stored Energy / Unexpected Energization:**
        *   **Hazard**: Battery remains energized even when disconnected. Capacitors in test equipment can store charge.
        *   **Mitigation**:
            *   `[ ]` Always treat batteries as live unless proven otherwise.
            *   `[ ]` Safely discharge any capacitors in the test setup and in the DUT (if applicable) before handling.
            *   `[ ]` Implement clear power-up/power-down sequences.

**II. Thermal Hazards:**
    *   **1. Overheating / Thermal Runaway (especially for Lithium-ion `{battery_chemistry_and_voltage}`):**
        *   **Hazard**: Excessive heat generation during high current `{test_type_and_max_current_or_power}`
 internal short circuits
 or cell failure
 leading to fire
 smoke
 and explosion.
        *   **Mitigation**:
            *   `[ ]` Closely monitor battery cell/module temperatures using thermocouples or IR cameras.
            *   `[ ]` Implement over-temperature protection in the test script/equipment to stop test and isolate battery.
            *   `[ ]` Ensure adequate cooling/ventilation for the battery as per its specification
 especially in the `{test_environment_description}`.
            *   `[ ]` For Li-ion
 have appropriate fire suppression system for Class D fires or as recommended for `{battery_chemistry_and_voltage}` (e.g.
 specialized extinguishers
 water deluge IF safe for setup
 containment vessel). Confirm based on `{test_environment_description}` capabilities.
            *   `[ ]` Maintain safe spacing from flammable materials.

**III. Chemical Hazards (Relevant to `{battery_chemistry_and_voltage}`):**
    *   **1. Electrolyte Leakage / Venting:**
        *   **Hazard**: Leakage of corrosive
 flammable
 or toxic electrolyte. Venting of flammable/toxic gases during overcharge/over-discharge/thermal event.
        *   **Mitigation**:
            *   `[ ]` Wear appropriate chemical-resistant gloves and eye protection if handling potentially leaky cells/modules.
            *   `[ ]` Ensure good ventilation in the `{test_environment_description}` to disperse any vented gases. Consider gas detection systems.
            *   `[ ]` Have spill control kits available appropriate for the electrolyte type.
            *   `[ ]` Understand the specific hazards of `{battery_chemistry_and_voltage}` electrolyte.

**IV. Mechanical Hazards:**
    *   **1. Battery Handling / Dropping:**
        *   **Hazard**: HV batteries can be heavy and awkward. Dropping can cause physical injury and internal damage leading to other hazards.
        *   **Mitigation**:
            *   `[ ]` Use appropriate lifting aids for heavy batteries.
            *   `[ ]` Ensure secure mounting and fixtures for the battery during test.
    *   **2. Projectiles (in case of cell rupture/explosion):**
        *   **Hazard**: High-energy failure can eject parts of the battery or test fixture.
        *   **Mitigation**:
            *   `[ ]` Use a robust safety enclosure or test cell designed to contain potential explosions/projectiles
 especially for abusive `{test_type_and_max_current_or_power}`.
            *   `[ ]` Maintain safe viewing distances or use remote monitoring.

**V. General Procedural & Environmental Safety:**
    *   `[ ]` **Emergency Plan**: Ensure an emergency shutdown procedure is established and all personnel are trained. Know location of emergency exits
 E-stops
 fire extinguishers.
    *   `[ ]` **Training**: Only personnel trained in HV safety and specific battery handling/test procedures should conduct tests.
    *   `[ ]` **Two-Person Rule**: Consider a two-person rule for HV operations
 especially during setup and initial runs.
    *   `[ ]` **Clear Signage**: Post clear warning signs indicating HV test area
 required PPE
 and emergency contacts.

**IMPORTANT**: This list is not exhaustive. A thorough risk assessment specific to the exact `{battery_chemistry_and_voltage}` characteristics
 detailed test plan for `{test_type_and_max_current_or_power}`
 and `{test_environment_description}` conditions MUST be performed. Always follow manufacturer guidelines and relevant safety standards (e.g.
 ISO
 IEC
 UL
 NFPA).
							

人工智能提示 医疗电气设备 PSU 的 FMEA

为指定医疗电气设备的电源装置(PSU)生成初步的故障模式和影响分析(FMEA)表,重点关注患者和操作员的安全。这有助于工程师在设计或选择 PSU 时主动考虑风险。输出为 CSV 格式的 FMEA 表。

输出: 

				
					Act as a Medical Device Quality and Safety Engineer
 specializing in electrical safety and FMEA.
Your TASK is to generate a preliminary Failure Modes and Effects Analysis (FMEA) table for the Power Supply Unit (PSU) of a `{medical_equipment_type}` (e.g.
 'Portable Ultrasound Scanner'
 'Vital Signs Monitor'
 'Surgical Laser System').
The PSU is described by `{psu_type_and_key_functions_text}` (e.g.
 'Internal AC/DC SMPS
 provides isolated 12V
 5V
 and 24V outputs
 mains input filtering'
 'External medical grade AC adapter with DC output').
Consider requirements from `{relevant_safety_standard_e_g_iec60601}` (e.g.
 IEC 60601-1 3rd Edition
 focusing on Means of Protection - MOPP/MOOP).

**PRELIMINARY FMEA TABLE (Output as CSV String):**

**CSV Header**: `Item_Function
Potential_Failure_Mode
Potential_Effect_of_Failure_Local_PSU
Potential_Effect_of_Failure_System_Medical_Device
Potential_Effect_of_Failure_Patient_Operator
Potential_Cause_of_Failure
Current_Controls_Prevention_Detection
Severity_S_1_5
Occurrence_O_1_5
Detection_D_1_5
Risk_Priority_Number_RPN
Recommended_Actions_Further_Considerations`

**FMEA Logic to Populate Rows (AI to generate 3-5 example rows):**
For key functional blocks or components within a typical PSU as per `{psu_type_and_key_functions_text}` (e.g.
 Mains Input Filter
 Rectifier
 PFC Stage
 Isolation Transformer
 Output Rectifier/Filter
 Control Circuitry
 Enclosure/Connectors):
1.  **Item/Function**: The PSU sub-circuit or function.
2.  **Potential Failure Mode**: How it could fail (e.g.
 Short circuit
 Open circuit
 Component drift
 Loss of isolation
 Overvoltage output
 No output).
3.  **Potential Effect (Local
 System
 Patient/Operator)**: Consequences at different levels.
    *   Focus on safety implications related to `{relevant_safety_standard_e_g_iec60601}`: electric shock
 burns
 incorrect device operation affecting diagnosis/treatment.
4.  **Potential Cause**: Why the failure mode might occur (e.g.
 Component end-of-life
 Overstress
 Manufacturing defect
 Environmental factors
 Design flaw).
5.  **Current Controls**: Typical design features or tests that prevent/detect the failure (e.g.
 Fuses
 MOVs
 Proper insulation/creepage/clearance
 Production testing
 Component derating
 Shielding).
6.  **Severity (S)**: Impact on patient/operator safety (1=Low
 5=Catastrophic). Consider `{relevant_safety_standard_e_g_iec60601}` context.
7.  **Occurrence (O)**: Likelihood of the cause (1=Remote
 5=Frequent).
8.  **Detection (D)**: Likelihood of detecting failure mode/cause BEFORE harm occurs (1=High
 5=Very Low/Impossible).
9.  **RPN**: S * O * D.
10. **Recommended Actions**: Further design analysis
 testing
 or control improvements.

**Example CSV Rows (Conceptual - AI to generate specific content):**
`Mains_Input_Filter
Capacitor_Short_Y-cap_to_Earth
Loss_of_filtering
Increased_conducted_EMI
Potential_for_enclosure_to_become_live_if_PE_is_faulty
Electric_shock_to_operator_or_patient
Component_failure_due_to_overvoltage_or_defect
Safety_certified_Y-capacitors
Production_hipot_test
Proper_PE_connection
5
2
3
30
Verify_Y-cap_rating_and_PE_integrity
Consider_redundant_PE_path_if_risk_high`
`Isolation_Transformer
Primary-to-Secondary_Winding_Short
Loss_of_isolation
High_voltage_on_secondary_side
Entire_medical_device_secondary_circuitry_becomes_live
Severe_electric_shock_risk_to_patient_and_operator
Insulation_breakdown_due_to_age
overvoltage
or_manufacturing_defect
Reinforced_or_double_insulation_design_as_per_IEC60601-1
100%_hipot_testing_in_production
Use_of_certified_transformer
5
1
2
10
Ensure_transformer_meets_MOPP_MOOP_requirements_for_`{medical_equipment_type}`
Review_creepage_clearance_post-assembly`
`Output_Control_Circuit
Feedback_Loop_Failure_leading_to_Overvoltage
PSU_output_voltage_exceeds_specification
Damage_to_medical_device_electronics
Incorrect_device_operation_e.g._over-delivery_of_energy_or_incorrect_reading
Patient_injury_due_to_device_malfunction
Component_failure_in_feedback_path_e.g._optocoupler_resistor
Software_error_in_digital_control
Overvoltage_protection_circuit_OVP
Independent_voltage supervision
Software_validation
4
2
3
24
Verify_OVP_setpoint_and_response_time
Assess_single_fault_tolerance_of_feedback_loop`

**IMPORTANT**: This FMEA is PRELIMINARY. The AI should populate it with plausible scenarios relevant to a PSU for `{medical_equipment_type}` and general requirements of `{relevant_safety_standard_e_g_iec60601}`. The S
O
D ratings are INITIAL ESTIMATES for discussion
 actual ratings require detailed team review and data. The focus is on safety
 particularly patient and operator MOPs.
							
目录
    Aggiungere un'intestazione per iniziare a generare l'indice.

    设计或项目挑战?
    机械工程师、项目或研发经理
    有效的产品开发

    可在法国和瑞士短期内接受新的挑战。
    通过 LinkedIn 联系我
    塑料和金属制品、按成本设计、人体工程学、中高产量、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485 II 级和 III 级

    我们正在寻找新的赞助商

     

    贵公司或机构从事技术、科学或研究工作?
    > 给我们发送消息 <

    接收所有新文章
    免费,无垃圾邮件,电子邮件不分发也不转售

    或者您可以免费获得完整会员资格以访问所有受限制的内容>这里<

    涵盖的主题: 测试提示、验证、用户输入、数据收集、反馈机制、互动测试、调查设计、可用性测试、软件评估、实验设计、性能评估、问卷调查、ISO 9241、ISO 25010、ISO 20282、ISO 13407 和 ISO 26362。

    1. 梅根-克莱

      人工智能生成提示的有效性是否在很大程度上取决于输入数据的质量?

    2. 兰斯

      工程项目也是如此?我们也来讨论一下。

      1. 法布里斯

        人工智能不是万能的解决方案!

    发表评论

    您的邮箱地址不会被公开。 必填项已用 * 标注

    相关文章

    滚动至顶部

    你可能还喜欢