
通过增强人类在设计、分析方面的能力,在线人工智能工具正在迅速改变机械工程、 制造业和维护。与传统方法相比,这些人工智能系统可以更快地处理海量数据、识别复杂模式并生成新的解决方案。例如,人工智能可以帮助您优化性能和可制造性设计,加速复杂的模拟,预测材料特性,并自动执行各种分析任务。
例如,下面提供的提示有助于生成设计、加速模拟(有限元分析/有限差分分析)、预测性维护(人工智能通过分析机械的传感器数据来预测潜在故障,从而实现主动服务并最大限度地减少停机时间)、材料选择等方面的帮助。
- 翻译和语言改编
- 机械工程
人工智能提示 研究摘要简化
- 快速成型制造, 增材制造设计(DfAM), 设计思维, 机械工业, 研究与开发, 用户体验(UX)
将复杂的机械工程主题研究论文摘要简化为通俗易懂的语言,适合普通工程读者或与非专业人士交流。它旨在传达核心信息和意义,而不使用过多的专业术语。输出为文本。
输出:
- 文本
- 不需要实时互联网
- 字段:{研究论文摘要文本}{目标受众描述}{研究论文摘要文本}{目标受众描述}.{目标受众描述}.
Act as a Science Communicator with a background in Mechanical Engineering.
Your TASK is to rewrite the provided `{research_paper_abstract_text}` into a simplified version that is clear
concise
and understandable to a `{target_audience_description}`.
The goal is to retain the core scientific message
findings
and significance while minimizing technical jargon.
**1. Input Details**:
* `{research_paper_abstract_text}`: The original abstract from a scientific or engineering research paper.
* `{target_audience_description}`: A description of the intended audience for the simplified version (e.g.
'undergraduate engineering students from other disciplines'
'project managers with basic technical literacy'
'marketing team for a tech product'
'general public interested in technology').
**2. Simplification Process**:
* **Identify Core Message**: Read the `{research_paper_abstract_text}` to thoroughly understand:
* What problem was addressed? (Background/Motivation)
* What was the main approach or method used? (Methodology)
* What were the key findings? (Results)
* What is the significance or implication of these findings? (Conclusion/Impact)
* **Jargon Reduction**:
* Identify highly specialized technical terms and acronyms.
* Replace them with simpler synonyms or short explanations.
* If a technical term is ESSENTIAL and cannot be easily replaced
provide a brief parenthetical or embedded explanation upon its first use.
* **Sentence Structure**:
* Break down long
complex sentences into shorter
more digestible ones.
* Use active voice where possible.
* **Focus and Clarity**:
* Remove or condense less critical details or overly nuanced points that are not essential for the `{target_audience_description}`.
* Focus on conveying the 'big picture' and the practical relevance if any.
* Use analogies or relatable examples if appropriate for the audience
without oversimplifying to the point of inaccuracy.
* **Tone and Style**:
* Adjust the tone to be engaging and accessible for the `{target_audience_description}`.
* Avoid condescending language.
**3. Output Format**:
* The output MUST be the simplified abstract as a single block of plain text.
* It should typically be shorter than or roughly the same length as the original abstract
but easier to read.
* Start with a sentence that clearly states the main topic or purpose in simple terms.
**Example Structure for Simplified Abstract (internal thought process
not rigid output format)**:
* *The Big Problem:* [Start by explaining the general problem this research addresses in simple terms.]
* *What Researchers Did:* [Describe their main activity or method simply.]
* *What They Discovered:* [State the most important findings clearly.]
* *Why It Matters:* [Explain the significance or potential application/benefit for the target audience.]
**IMPORTANT**: The simplified version MUST remain factually accurate and not misrepresent the original research. The level of simplification should be appropriate for the specified `{target_audience_description}`.
- 最适合通过简化技术摘要,让管理人员学生或非专家等更广泛的受众也能了解复杂的机械工程研究。
- 赠款提案和科学写作协助
- 机械工程
人工智能提示 技术报告结构增强器
- 敏捷方法论, 持续改进, 设计过程, 设计思维, 机械工业, 流程改进, 项目管理, 质量管理
此提示可指导人工智能提高机械工程报告中某一章节草稿的清晰度、连贯性和技术严谨性。用户输入草稿文本和报告章节名称,就能得到一个经过改进、结构合理的版本。
输出:
- Markdown
- 不需要实时互联网
- 字段:{草稿文本}{ 节名}
Improve and restructure the following draft section of a mechanical engineering technical report titled '{section_name}': {draft_text}. Enhance clarity, technical accuracy, and flow. Use markdown formatting with appropriate headings, subheadings, and bullet points where necessary. Ensure terminology is precise and consistent. Provide your improved version only, without adding explanations.
- 最适合最适合快速完善和润色技术报告章节
- 翻译和语言改编
- 机械工程
人工智能提示 多语言词汇生成器
- 面向制造设计 (DfM), 设计思维, 机械工业, 流程改进, 产品开发, 项目管理, 质量管理, 可持续发展实践
以多种目标语言生成用户提供的机械工程术语词汇表。这有助于创建一致的多语言文档和交流。输出为 CSV 格式的词汇表。
输出:
- CSV
- 不需要实时互联网
- 字段:{technical_terms_list_english_csv} {target_languages_iso_codes_csv} 技术术语列表
Act as an Engineering Lexicographer and Terminology Specialist.
Your TASK is to create a multilingual glossary for a list of English mechanical engineering terms provided in `{technical_terms_list_english_csv}`
translating them into the languages specified in `{target_languages_iso_codes_csv}`.
You MUST ensure high-quality technical translations.
**1. Input Parameters**:
* `{technical_terms_list_english_csv}`: A CSV string containing a single column of English technical terms related to mechanical engineering. The first row can be a header like 'English_Term'.
Example: `English_Term
Stress
Strain
Torque
Finite Element Analysis
Heat Exchanger`
* `{target_languages_iso_codes_csv}`: A CSV string listing the ISO 639-1 language codes for the target languages (e.g.
'de
fr
es
ja').
**2. Glossary Generation Process**:
* **Parse Inputs**:
* Read the list of English terms from `{technical_terms_list_english_csv}`.
* Read the list of target language codes from `{target_languages_iso_codes_csv}`.
* **Translation**:
* For EACH English term:
* For EACH target language code: Translate the English term into its technically accurate equivalent in that target language. Pay close attention to context within mechanical engineering.
* If a direct equivalent is difficult or a term has multiple common translations
choose the most standard one or provide a brief note if essential (though the CSV format is simple). For this task
aim for the single best equivalent.
* Handle multi-word terms (e.g.
'Finite Element Analysis') as a single concept for translation.
* **Formatting for CSV**:
* The output CSV should have 'English_Term' as its first column header.
* Subsequent column headers should be the language codes provided in `{target_languages_iso_codes_csv}` (e.g.
'de'
'fr'
'es').
* Each row will contain the English term followed by its translations in the respective target languages.
**3. Output Format**:
* You MUST return the glossary as a single CSV formatted string.
* The first row MUST be the header row as described above.
* Ensure proper CSV escaping if any terms themselves contain commas (though this should be rare for single terms
more likely for definitions if they were included
but here it is terms only). Assume terms do not contain commas for simplicity.
Example Output Structure (actual output will be a CSV string):
`English_Term
de
fr
es`
`Stress
Spannung
Contrainte
Esfuerzo`
`Strain
Dehnung
Déformation
Deformación`
`Torque
Drehmoment
Couple
Par Motor`
_(...and so on for all terms and all requested languages)
**IMPORTANT**: The quality of translation is CRITICAL. Use your knowledge of technical terminology. If your capabilities are limited for certain highly specialized terms or language pairs
translate to the best of your ability. Focus on common and unambiguous translations where possible.
- 最适合用于创建多语言机械工程术语词汇表,以支持国际项目文档和跨语言的一致术语。
- 赠款提案和科学写作协助
- 机械工程
人工智能提示 赠款预算说明生成器
- 成本分配, 财务, 机械工业, 项目管理, 质量管理, 研究与开发, 可持续发展实践, 价值评估工程(VE)
本提示要求人工智能根据列出预算项目、成本和用途的 CSV 输入表,为机械工程拨款提案生成详细的预算理由说明。它有助于向审核人员清楚地阐述资金需求。
输出:
- 文本
- 不需要实时互联网
- 字段:{csv_budget_items} 预算项目
Given the following CSV table of budget items for a mechanical engineering grant proposal: {csv_budget_items}, generate a detailed budget justification. For each item, explain its purpose, necessity, and relevance to the project objectives. Organize the justification by budget category and use bullet points for readability. Ensure the tone is formal and persuasive, suitable for funding agency review.
- 最适合最适合创建清晰、有说服力的预算说明,支持资金申请
- 翻译和语言改编
- 机械工程
人工智能提示 专利申请普通语言改编
- 增材制造设计(DfAM), 创新, 知识产权, 机械工业, 专利, 产品开发, 质量管理, 研究与开发, 以使用者為中心的設計
将正式的专利权利要求改写成通俗易懂的解释,让没有法律或专利领域深厚技术知识的受众也能理解。这有助于传达发明的精髓。输出为文本。
输出:
- 文本
- 不需要实时互联网
- 字段:{专利申请文本}{发明概述}.
Act as a Patent Analyst with skills in technical communication.
Your TASK is to adapt the provided `{patent_claim_text}` into a plain language explanation. The explanation should be understandable to an audience described by `{invention_general_description}` which also provides context about the invention's field.
The goal is to convey the SCOPE and ESSENCE of what the claim protects
without using legal jargon or overly technical details from the claim itself unless explained.
**1. Input Details**:
* `{patent_claim_text}`: The full text of a single patent claim (typically Claim 1
or another independent claim). Patent claims have a very specific structure
preamble
transitional phrase like 'comprising'
and then a series of elements or limitations.
* `{invention_general_description}`: A brief description of what the invention is generally about and its intended audience for this explanation (e.g.
'This invention is a new type of bicycle braking system
explain for a product development team including marketing staff.' OR 'This is a software algorithm for optimizing CNC machining paths
explain for mechanical engineers not specialized in software patents.').
**2. Adaptation Process**:
* **Deconstruct the Claim**:
* Identify the PREAMBLE (what the invention IS
e.g.
'A system for...'
'A method of...').
* Identify the KEY ELEMENTS or steps listed after the transitional phrase (e.g.
'comprising:'
'consisting of:'). Each element defines a necessary part of the invention to be covered by the claim.
* Understand the RELATIONSHIPS between these elements.
* **Simplify Terminology**:
* Replace patent-specific legal jargon (e.g.
'wherein'
'said'
'means for') with plain language.
* Simplify overly technical terms if possible
using the `{invention_general_description}` to gauge appropriate vocabulary
or briefly explain them.
* **Explain the Scope**:
* Clearly articulate what combination of features or steps defines the invention according to that claim. Emphasize that ALL listed key elements must typically be present for something to fall under the claim.
* Use analogies or simple examples if they help clarify the inventive concept
drawing from the `{invention_general_description}`.
* **Focus on 'What it Does' and 'Key Unique Parts'**:
* Instead of just listing parts
explain their function or purpose within the invention
if clear from the claim.
* Highlight what seems to be the core inventive aspect or the main differentiators suggested by the claim's structure.
* **Structure for Clarity**:
* Use short sentences and paragraphs.
* Bullet points can be effective for listing the key components or features in plain language.
**3. Output Format**:
* The output MUST be a plain text explanation.
* It should start by stating what the invention generally is (drawing from the preamble and `{invention_general_description}`).
* Then
it should break down what the specific claim covers.
* It should NOT be a legal opinion
but an educational simplification.
Example (Conceptual Flow):
`This invention is about [general description from input].
Specifically
this patent claim describes a [preamble in simple terms] that includes several key parts working together:
* First
it has a [simplified element A] that does [function of A].
* Second
there's a [simplified element B]
which is connected to [element A or other part] and is responsible for [function of B].
* Finally
[simplified element C] ensures that [outcome or function of C].
To be covered by this particular claim
a system would need to have all these described features and connections.`
**IMPORTANT**: Maintain the technical and conceptual accuracy of the claim's scope. The simplification should not broaden or narrow the claim improperly
but make its existing scope understandable. Avoid offering any legal advice or infringement opinions.
- 最适合用通俗易懂的语言为不精通专利法的机械工程师或业务相关人员解释正式专利权利要求的范围和实质。
- 赠款提案和科学写作协助
- 机械工程
人工智能提示 文献综述摘要生成器
- 增材制造设计(DfAM), 优化设计, 机械工业, 流程改进, 质量管理, 研究与开发, 统计分析, 可持续发展实践
本提示要求人工智能对以标题和摘要列表形式提供的与机械工程主题相关的学术论文或文章进行总结和归纳。它可生成结构化的文献综述概述。
输出:
- Markdown
- 需要实时互联网
- 字段:{论文列表}
You are given a list of academic papers related to the mechanical engineering topic: {list_of_papers}. For each paper, summarize the key findings, methodologies, and relevance. Then synthesize the information into a coherent literature review section highlighting gaps, trends, and consensus. Use markdown formatting with headings, bullet points, and italicized paper titles. Provide citations in a consistent style.
- 最适合最适合为研究提案快速生成全面的文献综述
- 文献回顾与趋势分析
- 机械工程
人工智能提示 材料进步文献综述
- 快速成型制造, 复合材料, 制造业, 材料, 机械工业, 机械性能, 产品开发, 研究与开发, 可持续发展实践
总结特定类别材料的最新进展(过去 N 年),重点关注其在特定机械工程领域的应用。它能识别关键研究趋势和突破性出版物。输出为标记符摘要。
输出:
- Markdown
- 需要实时互联网
- 字段:{材料类名称} {应用领域重点}{时间段_年}{应用领域_重点
Act as a Materials Science Research Analyst specializing in Mechanical Engineering applications.
Your TASK is to conduct a concise literature review summarizing recent advancements in `{material_class_name}` with a focus on their application in `{application_area_focus}` over the past `{time_period_years}` years.
You MUST use live internet access to gather information from scholarly articles
conference proceedings
and reputable technical sources.
**1. Search Strategy and Information Gathering**:
* Define search keywords based on `{material_class_name}` (e.g.
'High Entropy Alloys'
'Self-healing Polymers'
'Metal Matrix Composites'
'Biodegradable Magnesium Alloys')
`{application_area_focus}` (e.g.
'aerospace structural components'
'biomedical implants'
'automotive lightweighting'
'tribological coatings')
and terms like 'advancements'
'recent research'
'trends'
'review'.
* Query academic databases (like Google Scholar
Scopus
Web of Science if accessible through your tools) and leading publisher sites (e.g.
Elsevier
Springer
Wiley
Nature
Science).
* Filter results to the last `{time_period_years}` years.
* Prioritize review articles
highly cited research papers
and significant breakthrough reports.
**2. Analysis and Synthesis**:
* **Identify Key Advancements**: What are the most significant improvements or new discoveries related to `{material_class_name}` in the context of `{application_area_focus}`? This could include:
* New processing or manufacturing techniques.
* Improved mechanical properties (strength
toughness
fatigue resistance
wear resistance
etc.).
* Enhanced functional properties (e.g.
corrosion resistance
thermal stability
biocompatibility
self-healing capabilities).
* Novel compositions or microstructures.
* Successful application examples or case studies.
* **Identify Research Trends**: What are the current hot topics or directions in research for this material-application combination?
* **Key Researchers/Institutions (Optional
if prominent)**: Briefly mention any leading research groups if they consistently appear.
* **Seminal Publications (2-3 examples)**: Cite (author
year
title
journal if possible
or just a descriptive reference) a few highly impactful papers from the review period that exemplify these advancements.
**3. Output Format (Markdown)**:
* **Title**: Literature Review: Recent Advancements in `{material_class_name}` for `{application_area_focus}` (Last `{time_period_years}` Years).
* **1. Introduction**: Briefly introduce `{material_class_name}` and its importance in `{application_area_focus}`.
* **2. Key Advancements**: Use subheadings for different categories of advancements if logical
or a narrative style. Be specific and provide examples.
* **3. Current Research Trends**: Summarize the dominant research directions.
* **4. Notable Publications**: List 2-3 key papers as described above.
* **5. Challenges and Future Outlook**: Briefly discuss any remaining challenges or potential future developments.
* **6. Sources Consulted (General Statement)**: Indicate that the review is based on publicly available scholarly literature and state if specific databases were primarily used if known by your tools.
**IMPORTANT**: The summary should be concise yet informative
targeted at a mechanical engineer looking for an update on the topic. Ensure information is up-to-date by leveraging live internet search. Properly attribute information conceptually if not citing formally (e.g.
'Research indicates...'
'Studies have shown...').
- 最适合为机械工程师提供与其应用领域相关的特定材料类别的最新进展、研究趋势和重要出版物的概述。
- 文献回顾与趋势分析
- 机械工程
人工智能提示 主要研究人员识别工具
- 快速成型制造, 增材制造设计(DfAM), 工程基础, 机械工业, 产品开发, 研究与开发, 机器人技术, 可持续发展实践
确定并列出在某一机械工程专题领域高度活跃的主要研究人员或研究小组及其附属机构。这有助于寻找合作专家或相关文献。输出为 CSV 列表。
输出:
- CSV
- 需要实时互联网
- 字段:{主题机械工程} {所需的结果数量} {所需的结果数量} {所需的结果数量} {所需的结果数量
Act as a Research Intelligence Analyst specializing in mapping expertise in engineering fields.
Your TASK is to identify key researchers (or research groups) and their institutions who are highly active and influential in the `{niche_mechanical_engineering_topic}`. You should aim to provide `{number_of_results_desired}` distinct entries.
You MUST use live internet access to query academic search engines
university research portals
and publication databases.
**1. Search and Identification Strategy**:
* Formulate targeted search queries using keywords derived from `{niche_mechanical_engineering_topic}` (e.g.
if topic is 'triboelectric nanogenerators for vibration energy harvesting'
use these terms plus 'researcher'
'professor'
'publications'
'lab').
* Utilize academic search engines (Google Scholar
Semantic Scholar
etc.) and potentially specific university/research institution websites.
* Look for indicators of significant contribution and activity:
* High number of relevant publications in reputable journals/conferences.
* High citation counts for relevant work.
* Principal Investigator (PI) status on relevant grants or projects.
* Keynote speaker invitations or leadership roles in relevant conferences/societies.
* Patents filed in the area.
* Prioritize individuals who have published consistently or significantly on the topic in recent years (e.g.
last 5-10 years).
**2. Data Extraction and Formatting**:
* For each identified key researcher/group
try to find:
* Full Name of the lead researcher (if an individual) or Research Group Name.
* Primary Affiliated Institution (University
Research Institute).
* Department or Lab (if readily available).
* A key publication or a very brief summary of their focus within the `{niche_mechanical_engineering_topic}` (e.g.
'Focus on material development for TENGs' or a specific highly cited paper title).
* (Optional but helpful) A URL to their official profile or lab page if easily found.
**3. Output Format (CSV)**:
* You MUST return the results as a single CSV string.
* The CSV header row MUST be: `Rank
Researcher_Or_Group_Name
Affiliated_Institution
Department_Or_Lab
Focus_Or_Key_Publication
Profile_URL`
* Populate the table with up to `{number_of_results_desired}` entries
ranked roughly by perceived influence or activity if possible (this is subjective
so best effort is fine
or simply list them). If ranking is hard
'Rank' can be a simple serial number.
* If some information (e.g.
Department
Profile_URL) is not easily found
leave that cell blank in the CSV row but maintain comma separators.
Example of a CSV row:
`1
Prof. John Doe
Massachusetts Institute of Technology
Dept. of Mechanical Engineering
Pioneering work on XYZ sensors
http://mit.edu/johndoe`
**IMPORTANT**: The quality of results depends on effective searching and interpretation of academic output. Prioritize relevance to the `{niche_mechanical_engineering_topic}`. State that the list is based on publicly available information accessed at the time of the query.
- 最适合帮助机械工程师确定利基主题领域的领先研究人员和机构,以进行合作专家咨询或文献跟踪。
- 文献回顾与趋势分析
- 机械工程
人工智能提示 设计方法演变分析
- 敏捷方法论, 持续改进, 增材制造设计(DfAM), 六西格玛设计(DfSS), 设计思维, 精益制造, 产品开发, 质量管理
分析和概述特定机械设计方法或理念的历史演变、关键里程碑和当前趋势。这有助于工程师了解设计方法的背景和进步。输出为标记符叙述或时间轴。
输出:
- Markdown
- 需要实时互联网
- 字段:{设计方法名称} {大致起始年份或年代}
Act as an Engineering Design Historian and Theorist.
Your TASK is to analyze and outline the evolution of the mechanical design methodology known as `{design_methodology_name}`
starting from approximately `{approximate_start_year_or_era}` to the present day.
You should use live internet access to research its history
key proponents
seminal publications/tools
and current trends.
**1. Research and Information Gathering**:
* Use `{design_methodology_name}` (e.g.
'Design for Six Sigma (DFSS)'
'Axiomatic Design'
'TRIZ (Theory of Inventive Problem Solving)'
'Robust Design (Taguchi Methods)'
'Topology Optimization') and terms like 'history'
'evolution'
'key developments'
'timeline'
'impact' in your searches.
* Consult scholarly articles
books
historical accounts
and reputable engineering resources.
* Identify:
* Origins and foundational concepts/principles.
* Key individuals or organizations that developed or promoted the methodology.
* Significant milestones
publications
or software tools that marked turning points.
* How the methodology has been adapted or integrated with other approaches over time.
* Its impact on mechanical engineering practice.
* Current trends
criticisms
or areas of ongoing development related to it.
**2. Structuring the Analysis (Output as Markdown)**:
You can choose a chronological narrative or a timeline-based structure. Ensure the following aspects are covered:
* **Title**: The Evolution of `{design_methodology_name}` in Mechanical Engineering.
* **1. Introduction**: Briefly define `{design_methodology_name}` and state its core objectives.
* **2. Origins and Early Development (around `{approximate_start_year_or_era}` and following period)**:
* Describe the context or problems that led to its development.
* Mention key founders/pioneers and their initial contributions.
* **3. Key Milestones and Expansion**:
* Detail significant developments
theoretical refinements
or practical breakthroughs in chronological order or by thematic progression.
* Mention any influential books
papers
or case studies that popularized or validated the methodology.
* Discuss the development of associated tools or software
if applicable.
* **4. Mainstream Adoption and Impact**:
* When and how did it gain wider acceptance in industry and academia?
* What has been its primary impact on how mechanical design is approached or taught?
* **5. Current Status
Trends
and Criticisms**:
* How is `{design_methodology_name}` viewed or used today?
* Are there new interpretations
integrations with digital tools (e.g.
AI
MBSE)
or extensions of the methodology?
* Are there any common criticisms or limitations discussed in the literature?
* **6. Future Outlook**:
* Brief speculation on its future trajectory or relevance.
**IMPORTANT**: The analysis should be insightful and provide a good historical overview for a mechanical engineer. Focus on conceptual evolution and practical impact. Ensure information is corroborated from reliable sources accessed via the internet.
- 最适合为机械工程师提供有关特定设计方法如何演变并影响该领域的历史视角和当前理解。
- 文献回顾与趋势分析
- 机械工程
人工智能提示 从摘要中识别知识差距
- 快速成型制造, 增材制造设计(DfAM), 创新, 机械工业, 流程改进, 质量管理, 研究与开发, 可持续发展实践
通过分析最新研究摘要集,确定特定机械工程领域内潜在的知识差距或未来研究领域。这有助于研究人员确定新的研究问题。输出为标记符列表。
输出:
- Markdown
- 不需要实时互联网
- 字段:{研究领域描述文本}{摘要集文本{摘要集文本}{研究领域描述文本}{摘要集文本}.
Act as a Research Strategist with expertise in identifying emerging research fronts in Mechanical Engineering.
Your TASK is to analyze a `{collection_of_abstracts_text}` from recent research within the `{research_area_description_text}` and identify potential knowledge gaps
unanswered questions
or underexplored aspects that could suggest avenues for future research.
**1. Input Processing**:
* `{research_area_description_text}`: A clear description of the specific field or sub-field of mechanical engineering (e.g.
'Additive Manufacturing of Nickel Superalloys for High-Temperature Applications'
'Vibration Damping using Metamaterials in Rotating Machinery'
'Machine Learning for Predictive Maintenance of Hydraulic Systems').
* `{collection_of_abstracts_text}`: A single block of text containing multiple research paper abstracts (e.g.
5-10 abstracts). Each abstract should be clearly demarcated if possible
or just concatenated.
**2. Analysis Methodology**:
* **Thematic Analysis**: Read through all abstracts to understand the main themes
methodologies
and findings being reported in the `{research_area_description_text}`.
* **Identify Common Focus Areas**: What specific problems
materials
techniques
or applications are frequently addressed?
* **Look for Limitations Stated**: Do any abstracts explicitly mention limitations of their own work
or suggest future work? These are direct pointers to gaps.
* **Note Unaddressed Intersections**: Are there logical connections between sub-topics that don't seem to be explored? (e.g.
if one abstract discusses material A for application X
and another discusses material B for application X
is the comparison between A and B for X a gap?).
* **Consider Unexplored Parameters or Conditions**: Are studies typically focused on a narrow range of conditions
materials
or scales? What happens outside these ranges?
* **Methodological Gaps**: Are certain advanced methodologies (e.g.
novel simulation techniques
AI/ML approaches
new experimental methods) not yet widely applied in this area despite potential benefits?
* **Contradictory or Inconclusive Findings**: Do any abstracts present conflicting results or highlight areas where findings are still inconclusive?
* **Assumptions and Simplifications**: What common assumptions are made that might not hold true in all scenarios
suggesting a need for more complex models or experiments?
**3. Output Format (Markdown)**:
* **Title**: Potential Knowledge Gaps and Future Research Directions in `{research_area_description_text}` (Based on Provided Abstracts).
* **1. Overview of Current Research Focus**: Briefly summarize the dominant themes identified in the provided abstracts.
* **2. Identified Potential Knowledge Gaps / Research Questions**: This is the main section. List each potential gap or research question as a clear
concise bullet point. For each point
briefly explain the reasoning based on your analysis of the abstracts. Examples:
* `* **The long-term performance of [Material X] under cyclic thermal loading combined with [Environmental Factor Y] appears underexplored.** While abstracts A and B discuss thermal performance
and abstract C mentions Factor Y independently
their combined effect is not addressed.`
* `* **Comparative analysis of [Technique 1] vs. [Technique 2] for achieving [Specific Outcome Z] is lacking.** Abstracts D and E advocate for different techniques but no direct comparison of efficacy or cost-effectiveness was found.`
* `* **Most studies focus on [Specific Scale/Condition A]
leaving a gap in understanding behavior at [Different Scale/Condition B].** This is evident as abstracts F
G
H all operate within Condition A.`
* **3. Concluding Remarks**: Briefly reiterate the value of exploring these gaps.
**IMPORTANT**: The identified gaps MUST be logically derived from the content of the `{collection_of_abstracts_text}` and the context of `{research_area_description_text}`. Avoid speculating wildly beyond the provided information. The output should stimulate critical thinking for new research.
- 最适合通过分析最新摘要集中的趋势和局限性,帮助研究人员确定机械工程子领域内的新研究问题和知识差距。
我们是否假设人工智能总能生成机械工程方面的最佳提示?这些提示是如何生成的?
人工智能会让人类工程师变得多余吗?
相关文章
最佳工程师笑话(以及设计师、创造者、营销人员……)
5 个能力成熟度模型集成 (CMMI) 级别
工业物联网(IIoT)
Innovation.world 的概念探索者™
工程、科学和研究编程语言——全面比较
材料识别技术和材料可靠性识别 (PMI)