Casa » Quantum Statistics

Quantum Statistics

1926
  • Satyendra Nath Bose
  • Albert Einstein
  • Enrico Fermi
  • Paul Dirac

Quantum statistics modifies classical statistical mechanics to account for the indistinguishability of identical particles. It splits into two types: Fermi-Dirac statistics for fermions (half-integer spin particles like electrons), which obey the Pauli exclusion principle, and Bose-Einstein statistics for bosons (integer spin particles like photons), which can occupy the same quantum state. This distinction is crucial at low temperatures and high densities.

Classical Maxwell-Boltzmann statistics assumes that particles in a system are distinguishable, meaning one could, in principle, label and track each one. However, quantum meccanica revealed that identical particles are fundamentally indistinguishable. This leads to profound changes in how microstates are counted. For bosons, multiple particles can occupy a single energy state, leading to an enhanced probability of collective behavior. The average occupation number of a state with energy [latex]\epsilon_i[/latex] is given by the Bose-Einstein distribution: [latex]\langle n_i \rangle_{BE} = \frac{1}{e^{(\epsilon_i – \mu)/k_B T} – 1}[/latex]. This can lead to a macroscopic number of particles collapsing into the ground state at low temperatures, forming a Bose-Einstein condensate.

For fermions, the Pauli exclusion principle forbids any two identical particles from occupying the same quantum state. This ‘repulsive’ statistical effect gives rise to the structure of atoms and the stability of matter. The average occupation number is given by the Fermi-Dirac distribution: [latex]\langle n_i \rangle_{FD} = \frac{1}{e^{(\epsilon_i – \mu)/k_B T} + 1}[/latex]. This function is always less than or equal to 1. At absolute zero, fermions fill up all available energy levels up to a maximum energy called the Fermi energy. This creates a ‘Fermi sea’ and is responsible for the pressure that supports white dwarf stars against gravitational collapse. At high temperatures, both quantum distributions converge to the classical Maxwell-Boltzmann distribution.

UNESCO Nomenclature: 2211
– Thermodynamics

Tipo

Abstract System

Disruption

Revolutionary

Utilizzo

Widespread Use

Precursors

  • Planck’s law of black-body radiation, which implicitly treated photons as bosons
  • The Pauli exclusion principle, which is the foundation of Fermi-Dirac statistics
  • De Broglie’s hypothesis of wave-particle duality
  • Classical Maxwell-Boltzmann statistical mechanics

Applicazioni

  • semiconductor physics and the operation of transistors
  • superconductivity and superfluidity
  • the theory of white dwarf and neutron stars
  • the operation of lasers (based on properties of bosons)
  • bose-einstein condensates

Brevetti:

QUELLO

Potential Innovations Ideas

Livelli! Iscrizione richiesta

Per accedere a questo contenuto devi essere un membro di !Professionals (100% free)!

Iscriviti ora

Siete già membri? Accedi
Related to: quantum statistics, Fermi-Dirac, Bose-Einstein, fermions, bosons, Pauli exclusion principle, Bose-Einstein condensate, quantum mechanics

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

DISPONIBILE PER NUOVE SFIDE
Mechanical Engineer, Project, Process Engineering or R&D Manager
Sviluppo efficace del prodotto

Disponibile per una nuova sfida con breve preavviso.
Contattami su LinkedIn
Plastic metal electronics integration, Design-to-cost, GMP, Ergonomics, Medium to high-volume devices & consumables, Lean Manufacturing, Regulated industries, CE & FDA, CAD, Solidworks, Lean Sigma Black Belt, medical ISO 13485

Stiamo cercando un nuovo sponsor

 

La tua azienda o istituzione si occupa di tecnica, scienza o ricerca?
> inviaci un messaggio <

Ricevi tutti i nuovi articoli
Gratuito, no spam, email non distribuita né rivenduta

oppure puoi ottenere la tua iscrizione completa -gratuitamente- per accedere a tutti i contenuti riservati >Qui<

Historical Context

(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)

Related Invention, Innovation & Technical Principles

Torna in alto

Potrebbe anche piacerti