Casa » Legge di Hooke generalizzata

Legge di Hooke generalizzata

1678
  • Robert Hooke
  • Thomas Young
  • Augustin-Louis Cauchy
Laboratorio del XVII secolo con strumenti per le prove di trazione ed equazioni della legge di Hooke generalizzata.

Generalized Hooke’s Law is the equazione costitutiva for linear elastic materials, stating that the stress tensor is linearly proportional to the strain tensor. The relationship is expressed as [latex]\sigma = C : \varepsilon[/latex], where [latex]\sigma[/latex] is the stress tensor, [latex]\varepsilon[/latex] is the strain tensor, and [latex]C[/latex] is the fourth-order stiffness tensor containing the material’s elastic constants.

While Robert Hooke’s original 1678 law (“ut tensio, sic vis” – as the extension, so the force) described a simple one-dimensional linear relationship, the generalized Hooke’s Law extends this principle to three dimensions. It forms the mathematical foundation of the theory of linear elasticity. The relationship connects the six independent components of the stress tensor to the six independent components of the infinitesimal strain tensor. This is achieved through the stiffness tensor [latex]C_{ijkl}[/latex], a fourth-order tensor containing 81 components in its most general form.

Due to the symmetry of the stress and strain tensors, the number of independent components in the stiffness tensor reduces to 36. Furthermore, assuming the existence of a strain energy density function, the stiffness tensor itself becomes symmetric ([latex]C_{ijkl} = C_{klij}[/latex]), reducing the number of independent elastic constants to 21 for the most general anisotropic material. For materials with higher degrees of symmetry, this number is further reduced. For an isotropic material, which has the same properties in all directions, only two independent elastic constants are needed, such as Young’s Modulus (E) and Poisson’s Ratio (ν). In this common case, the law simplifies significantly, allowing for direct calculation of stresses from strains and vice-versa. This law is only valid within the material’s elastic limit; beyond this point, permanent plastic deformation occurs, and other constitutive models are required.

UNESCO Nomenclature: 2208
- Meccanica

Tipo

Physical Law

Interruzione

Fondamento

Utilizzo

Uso diffuso

Precursori

  • Osservazioni sulle proprietà elastiche dei materiali
  • Sviluppo dei concetti di stress e deformazione
  • Le leggi del moto di Newton

Applicazioni

  • elemento finito analysis (FEA) software for structural design
  • progettazione di molle, travi e altri componenti elastici
  • caratterizzazione dei materiali tramite prove di trazione
  • sismologia per modellare la propagazione delle onde elastiche attraverso la Terra

Brevetti:

NA

Potenziali idee innovative

Livelli! Iscrizione richiesta

Per accedere a questo contenuto devi essere un membro di !Professionals (100% free)!

Iscriviti ora

Siete già membri? Accedi
Related to: Hooke’s law, linear elasticity, constitutive equation, stress-strain relationship, stiffness tensor, Young’s modulus, Poisson’s ratio, isotropic material.

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

DISPONIBILE PER NUOVE SFIDE
Ingegnere meccanico, responsabile di progetto, ingegneria di processo o ricerca e sviluppo
Sviluppo efficace del prodotto

Disponibile per una nuova sfida con breve preavviso.
Contattami su LinkedIn
Integrazione di componenti elettronici in plastica e metallo, progettazione in base ai costi, GMP, ergonomia, dispositivi e materiali di consumo di medio-alto volume, produzione snella, settori regolamentati, CE e FDA, CAD, Solidworks, Lean Sigma Black Belt, ISO 13485 in ambito medico

Stiamo cercando un nuovo sponsor

 

La tua azienda o istituzione si occupa di tecnica, scienza o ricerca?
> inviaci un messaggio <

Ricevi tutti i nuovi articoli
Gratuito, no spam, email non distribuita né rivenduta

oppure puoi ottenere la tua iscrizione completa -gratuitamente- per accedere a tutti i contenuti riservati >Qui<

Contesto storico

(se la data non è nota o non è rilevante, ad esempio "meccanica dei fluidi", viene fornita una stima approssimativa della sua notevole comparsa)

Principi di invenzione, innovazione e tecnica correlati

Torna in alto

Potrebbe anche piacerti