Casa » Bernoulli’s Principle

Bernoulli’s Principle

1738
  • Daniel Bernoulli

Bernoulli’s principle states that for an inviscid flow, an increase in a fluid’s speed occurs simultaneously with a decrease in pressure or a decrease in its potential energy. It is a statement of the conservation of energy for a moving fluid, commonly expressed as [latex]p + \frac{1}{2}\rho v^2 + \rho gh = \text{constant}[/latex] along a streamline.

Bernoulli’s principle is derived from the principle of conservation of energy applied to an ideal fluid in motion. The equation’s three terms represent different forms of energy per unit volume. The term [latex]p[/latex] is the static pressure, representing the internal energy of the fluid. The term [latex]\frac{1}{2}\rho v^2[/latex] is the dynamic pressure, which is the kinetic energy of the fluid in motion. The final term, [latex]\rho gh[/latex], is the hydrostatic pressure, representing the fluid’s potential energy due to its elevation [latex]h[/latex] in a gravitational field [latex]g[/latex]. The principle asserts that the sum of these three terms remains constant along a single streamline.

It is crucial to understand the assumptions under which Bernoulli’s principle is valid: the flow must be steady (velocity at a point does not change with time), incompressible (density is constant), and inviscid (no frictional forces from viscosity). These are significant limitations, meaning the principle is an idealization. In real-world applications, viscous effects can cause energy losses that are not accounted for in the basic equation.

While often used to provide a simplified explanation for aerodynamic lift—where air traveling faster over the curved upper surface of a wing creates lower pressure compared to the flatter bottom surface—this is an incomplete picture. A full explanation of lift also requires considering Newton’s third law and the deflection of air downwards (downwash). Nevertheless, Bernoulli’s principle provides a powerful and intuitive tool for a first-order analysis of many fluid dynamics phenomena, from measuring flow rates with a Venturi meter to understanding how a perfume atomizer works.

UNESCO Nomenclature: 2210
– Mechanics

Tipo

Abstract System

Disruption

Foundational

Utilizzo

Widespread Use

Precursors

  • isaac newton’s laws of motion
  • leonhard euler’s work on fluid dynamics
  • early concepts of conservation of energy
  • studies of pressure by evangelista torricelli and blaise pascal

Applicazioni

  • aircraft wing lift generation (as a contributing factor)
  • carburetors in engines
  • venturi meters for flow measurement
  • atomizers and spray guns
  • pitot tubes for measuring airspeed

Brevetti:

QUELLO

Potential Innovations Ideas

Livelli! Iscrizione richiesta

Per accedere a questo contenuto devi essere un membro di !Professionals (100% free)!

Iscriviti ora

Siete già membri? Accedi
Related to: bernoulli’s principle, fluid dynamics, conservation of energy, pressure, velocity, inviscid flow, streamline, aerodynamics

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

DISPONIBILE PER NUOVE SFIDE
Ingegnere meccanico, responsabile di progetto o di ricerca e sviluppo
Sviluppo efficace del prodotto

Disponibile per una nuova sfida con breve preavviso.
Contattami su LinkedIn
Integrazione di componenti elettronici in plastica e metallo, progettazione in base ai costi, GMP, ergonomia, dispositivi e materiali di consumo di medio-alto volume, settori regolamentati, CE e FDA, CAD, Solidworks, Lean Sigma Black Belt, ISO 13485 in ambito medico

Stiamo cercando un nuovo sponsor

 

La tua azienda o istituzione si occupa di tecnica, scienza o ricerca?
> inviaci un messaggio <

Ricevi tutti i nuovi articoli
Gratuito, no spam, email non distribuita né rivenduta

oppure puoi ottenere la tua iscrizione completa -gratuitamente- per accedere a tutti i contenuti riservati >Qui<

Related Invention, Innovation & Technical Principles

Torna in alto

Potrebbe anche piacerti