
Gli strumenti di intelligenza artificiale online stanno rapidamente trasformando l'ingegneria meccanica aumentando le capacità umane di progettazione e analisi, produzionee manutenzione. Questi sistemi di intelligenza artificiale sono in grado di elaborare grandi quantità di dati, identificare modelli complessi e generare soluzioni innovative molto più rapidamente dei metodi tradizionali. Ad esempio, l'IA può aiutarvi a ottimizzare i progetti per le prestazioni e la producibilità, accelerare simulazioni complesse, prevedere le proprietà dei materiali e automatizzare un'ampia gamma di attività analitiche.
I suggerimenti forniti qui di seguito aiuteranno, ad esempio, a progettare in modo generativo, ad accelerare le simulazioni (FEA/CFD), ad aiutare nella manutenzione predittiva, dove l'intelligenza artificiale analizza i dati dei sensori dei macchinari per prevedere potenziali guasti, consentendo un'assistenza proattiva e riducendo al minimo i tempi di fermo, a selezionare i materiali e molto altro ancora.
- Questa pagina è specifica per un dominio. Se necessario, è possibile disporre di funzionalità di ricerca complete per tutti i domini e tutti i criteri nel nostro > Elenco dei suggerimenti AI <, dedicato a progettazione del prodotto E innovazione.
- Per motivi di tempo e di risorse del server, le richieste sono riservate ai soli membri registrati e non sono visibili in basso se non si è registrati. È possibile registrarsi, 100% gratuitamente:
È necessaria l'iscrizione
Per accedere a questo contenuto è necessario essere membri.
- Ottimizzazione del disegno sperimentale
- Ingegneria meccanica
Prompt AI per Gruppo di controllo Suggerimento per il test sui materiali
- Materiali, Industria meccanica, Proprietà meccaniche, Monitoraggio delle prestazioni, Garanzia di qualità, Controllo di qualità, Analisi statistica, Trattamento della superficie, Metodi di prova
Suggerisce gruppi di controllo e misure di riferimento adeguati per uno studio sperimentale su un nuovo materiale o trattamento superficiale in un'applicazione meccanica, garantendo confronti validi e conclusioni affidabili. Questo prompt aiuta gli ingegneri a progettare protocolli di prova dei materiali più solidi. Il risultato è una raccomandazione basata sul testo.
Uscita:
- Testo
- non richiede Internet in diretta
- Campi: {descrizione_materiale_di_prova_o_trattamento} {testo_condizioni_sperimentali} {metrica_di_performance_da_misurare_elenco_csv}
Act as an Experimental Design Specialist in Materials Science and Engineering.
Your TASK is to recommend appropriate control groups and baseline measurements for an experimental study involving `{test_material_or_treatment_description}` under `{experimental_conditions_text}`
where `{performance_metrics_to_be_measured_list_csv}` (CSV: 'Metric_Name
Units') are the key outputs.
The goal is to ensure that any observed changes in performance can be confidently attributed to the `{test_material_or_treatment_description}`.
**RECOMMENDATIONS FOR CONTROL GROUPS AND BASELINE MEASUREMENTS:**
**1. Understanding the Core Investigation:**
* The primary goal is to evaluate the effect of `{test_material_or_treatment_description}`.
* The `{experimental_conditions_text}` (e.g.
'High-temperature tensile testing at 600°C'
'Cyclic fatigue testing under 200 MPa load for 10^6 cycles'
'Wear testing against a steel counterface with 10N load for 5 hours') define the environment.
* The `{performance_metrics_to_be_measured_list_csv}` (e.g.
'Ultimate_Tensile_Strength_MPa
Elongation_Percent'
'Fatigue_Life_Cycles'
'Wear_Rate_mm3_Nm') are the indicators of performance.
**2. Recommended Control Group(s):**
* **A. Untreated/Standard Material Control:**
* **Description**: Samples made from the SAME BASE MATERIAL as the `{test_material_or_treatment_description}` but WITHOUT the specific new material feature or treatment being tested. If the test involves a new alloy
the control might be the conventional alloy it aims to replace or a version of the new alloy without a critical processing step.
* **Justification**: This is the MOST CRITICAL control. It allows for direct comparison to determine if the `{test_material_or_treatment_description}` provides any benefit (or detriment) over the standard or untreated state.
* **Processing**: These control samples should
as much as possible
undergo all other processing steps (e.g.
heat treatments
machining) that the test samples experience
EXCEPT for the specific treatment/feature being evaluated.
* **B. (Optional
if applicable) Benchmark/Reference Material Control:**
* **Description**: Samples made from a well-characterized
industry-standard benchmark material that is commonly used in similar applications or for which extensive performance data exists.
* **Justification**: This allows comparison against a known quantity and can help validate the testing procedure if the benchmark material behaves as expected. It also positions the performance of the `{test_material_or_treatment_description}` within the broader field.
* **C. (Optional
if treatment involves application) Placebo/Sham Treatment Control:**
* **Description**: If the treatment involves a complex application process (e.g.
a coating applied via a specific sequence of steps
some of which might independently affect the material)
a sham control experiences all application steps EXCEPT the active treatment ingredient/process.
* **Justification**: Helps to isolate the effect of the active treatment component from the effects of the application process itself.
**3. Baseline Measurements (Pre-Test Characterization):**
* For ALL samples (both test and control groups)
consider performing and recording the following baseline measurements BEFORE subjecting them to the main `{experimental_conditions_text}`:
* **Initial Microstructure Analysis**: (e.g.
Optical microscopy
SEM) To document the starting state
grain size
presence of defects
or treatment-induced surface changes.
* **Initial Hardness Testing**: A quick way to check for consistency or initial effects of a surface treatment.
* **Precise Dimensional Measurements**: Especially important for wear or deformation studies.
* **Surface Roughness**: If surface properties are critical or affected by the treatment.
* **Compositional Analysis (Spot Checks)**: To verify material or coating composition if it's a key variable.
* **Justification**: Baseline data helps confirm initial sample consistency
can reveal pre-existing flaws
and provides a reference point for assessing changes after testing.
**4. Experimental Considerations:**
* **Sample Size**: Ensure a sufficient number of samples in each group (test and control) for statistical validity.
* **Randomization**: If there are variations in the testing apparatus or over time
randomize the testing order of samples from different groups.
* **Identical Test Conditions**: CRITICAL - All groups (test and control) MUST be subjected to the EXACT SAME `{experimental_conditions_text}` and measurement procedures for the `{performance_metrics_to_be_measured_list_csv}`.
**Summary**: By including these control groups and baseline measurements
the experiment will be better able to isolate the true effect of the `{test_material_or_treatment_description}` and produce more reliable and defensible conclusions.
- Ideale per: Guidare gli ingegneri meccanici nella selezione di gruppi di controllo e di misure di base appropriate per i test sui materiali, garantendo la validità sperimentale e l'interpretazione affidabile dei risultati.
- Modellazione predittiva
- Ingegneria meccanica
Prompt AI per Failure Probability Estimation Model
- Analisi dei guasti, Analisi delle modalità e degli effetti dei guasti (FMEA), Manutenzione, Industria meccanica, Algoritmi di manutenzione predittiva, Analisi del rischio, Gestione del rischio, Analisi statistica
This prompt instructs the AI to develop a predictive model estimating failure probability of mechanical components based on input features and historical failure data provided in CSV format. It includes model explanation and usage instructions.
Uscita:
- Pitone
- non richiede Internet in diretta
- Fields: {csv_failure_data} {component_features}
Using the provided CSV dataset of historical failures: {csv_failure_data} and the list of component features: {component_features}, build a predictive model estimating failure probability of mechanical components. Steps: 1) Data preprocessing 2) Feature importance analysis 3) Model training (e.g., logistic regression, random forest) 4) Model evaluation 5) Provide Python code with comments explaining usage. Return only the code and brief explanations.
- Best for: Best for predicting component reliability and maintenance scheduling
- Modellazione predittiva
- Ingegneria meccanica
Prompt AI per Previsione della risposta biomeccanica dei materiali
- Biomateriali, Progettazione per la produzione additiva (DfAM), Metodo degli elementi finiti (FEM), Scienza dei materiali, Industria meccanica, Proprietà meccaniche, Algoritmi di manutenzione predittiva, Ingegneria strutturale
Questo prompt richiede all'IA di prevedere le risposte biomeccaniche dei materiali in condizioni di carico specifiche. L'utente inserisce le proprietà del materiale e i parametri di carico e l'IA produce un modello di risposta dettagliato.
Uscita:
- LaTeX
- non richiede Internet in diretta
- Campi: {proprietà_materiali} {carico_condizioni}
Predict the biomechanical response of a material with the following properties: {material_properties}, subjected to load conditions: {load_conditions}. Include stress-strain behavior, deformation, and failure criteria. Present the response model using LaTeX formatted equations and explanations. Highlight assumptions and boundary conditions clearly.
- Ideale per: Ideale per la modellazione del comportamento meccanico dei materiali sotto carichi biomeccanici
- Analisi della causa principale
- Ingegneria meccanica
Prompt AI per Generatore di ipotesi di causa del guasto
- Miglioramento continuo, Analisi dei guasti, Analisi delle modalità e degli effetti dei guasti (FMEA), Produzione snella, Tecniche di risoluzione dei problemi, Miglioramento dei processi, Gestione della qualità, Analisi della causa principale, Sei Sigma
Questa richiesta indirizza l'IA a generare ipotesi plausibili di causa principale per un evento di guasto meccanico, sulla base di una descrizione dettagliata del guasto e dei sintomi osservati forniti dall'utente.
Uscita:
- Testo
- non richiede Internet in diretta
- Campi: {descrizione_fallimento} {sintomi_osservati}
Analyze the following mechanical failure description: {failure_description}, along with observed symptoms: {observed_symptoms}. Generate a list of 5 plausible root cause hypotheses ranked by likelihood. For each hypothesis, provide supporting rationale and suggest diagnostic tests or inspections to confirm or rule out the cause. Format the output as a numbered list with clear headings.
- Ideale per: Ideale per le indagini iniziali e per restringere le cause dei guasti.
- Analisi della causa principale
- Ingegneria meccanica
Prompt AI per Fault Tree Analysis Builder
- Analisi dei guasti, Analisi delle modalità e degli effetti dei guasti (FMEA), Analisi dell'albero dei guasti (FTA), Industria meccanica, Miglioramento dei processi, Controllo di qualità, Gestione della qualità, Analisi del rischio, Gestione del rischio
This prompt requests the AI to construct a fault tree analysis diagram in text format for a given mechanical system failure event. The user provides the failure event description and components involved.
Uscita:
- Markdown
- non richiede Internet in diretta
- Fields: {failure_event} {system_components}
Construct a fault tree analysis for the mechanical failure event described as: {failure_event}. Consider the following system components: {system_components}. Present the fault tree in markdown using indentation and bullet points to represent logical AND/OR gates and failure paths. Include explanations of each branch and possible root causes. Use uppercase for failure events and lowercase for components.
- Best for: Best for visualizing failure propagation and dependencies in mechanical systems
- Analisi della causa principale
- Ingegneria meccanica
Prompt AI per Matrice di priorità dei modi di guasto
- Miglioramento continuo, Azione correttiva, Analisi dei guasti, Analisi delle modalità e degli effetti dei guasti (FMEA), Miglioramento dei processi, Controllo di qualità, Gestione della qualità, Analisi del rischio, Gestione del rischio
Questa richiesta chiede all'intelligenza artificiale di creare una matrice di prioritizzazione dei modi di guasto basata su un input CSV di modi di guasto, la loro gravità, il loro verificarsi e le valutazioni di rilevamento. Aiuta a stabilire la priorità delle cause principali dei guasti meccanici.
Uscita:
- CSV
- non richiede Internet in diretta
- Campi: {csv_failure_modes}
Using the following CSV data of failure modes with columns: Failure_Mode, Severity, Occurrence, Detection: {csv_failure_modes}, calculate Risk Priority Numbers (RPN) for each mode. Sort the failure modes by decreasing RPN and generate a prioritization matrix. Output a CSV with columns: Failure_Mode, Severity, Occurrence, Detection, RPN, Priority_Rank. Provide a brief summary explaining the top 3 prioritized failure modes and recommendations for mitigation.
- Ideale per: Ideale per dare priorità quantitativa alle indagini sui guasti e alle azioni correttive.
- Analisi della causa principale
- Ingegneria meccanica
Prompt AI per Root Cause Analysis Report Generator
- Miglioramento continuo, Azione correttiva, Analisi dei guasti, Produzione snella, Miglioramento dei processi, Garanzia di qualità, Gestione della qualità, Analisi della causa principale, Controllo statistico del processo (SPC)
This prompt instructs the AI to generate a detailed root cause analysis report for a mechanical failure incident based on a provided incident summary, test results, and inspection findings. It synthesizes information into a structured document.
Uscita:
- Markdown
- non richiede Internet in diretta
- Fields: {incident_summary} {test_results} {inspection_findings}
Generate a comprehensive root cause analysis report for the mechanical failure incident described below. Incident Summary: {incident_summary}. Test Results: {test_results}. Inspection Findings: {inspection_findings}. Structure the report with sections: Executive Summary, Problem Description, Analysis Methodology, Root Cause Identification, Recommendations for Prevention, and Conclusion. Use markdown formatting with headings and bullet points where appropriate. Emphasize clarity, technical accuracy, and actionable insights.
- Best for: Best for producing formal, structured root cause analysis documentation
- Considerazioni etiche e analisi dell'impatto
- Ingegneria meccanica
Prompt AI per Ethical Framework for Autonomous Machinery
- Sistemi avanzati di assistenza alla guida (ADAS), Intelligenza artificiale (IA), Veicolo autonomo, Pensiero progettuale, Human-Centered Design, Gestione del rischio, Robotica, Sicurezza
Generates a framework for ethical considerations in designing autonomous mechanical systems focusing on safety accountability and decision-making in unforeseen scenarios. This prompt helps engineers proactively address ethical challenges during the design phase of complex machinery. The output is a structured markdown document.
Uscita:
- Markdown
- non richiede Internet in diretta
- Fields: {autonomous_system_type} {operational_environment_description} {key_decision_making_scenarios_csv}
Act as an Ethics Advisor specializing in AI and Autonomous Systems in Mechanical Engineering.
Your TASK is to generate a structured ethical framework for the development and deployment of an `{autonomous_system_type}` operating in `{operational_environment_description}`.
The framework should address key ethical principles and provide guidance for handling scenarios listed in `{key_decision_making_scenarios_csv}` (a CSV string like 'Scenario_ID
Description
Potential_Conflict
e.g. S1
Obstacle_Avoidance
Prioritize_occupant_safety_vs_pedestrian_safety').
**FRAMEWORK STRUCTURE (MUST be Markdown format):**
**1. Introduction**
* Purpose of the Ethical Framework for `{autonomous_system_type}`.
* Scope of application considering `{operational_environment_description}`.
**2. Core Ethical Principles** (Define and explain relevance for `{autonomous_system_type}`)
* **Safety & Non-Maleficence**: Minimizing harm.
* **Accountability & Responsibility**: Who is responsible in case of failure?
* **Transparency & Explainability**: How are decisions made by the system understandable?
* **Fairness & Non-Discrimination**: Avoiding bias in decision-making.
* **Privacy**: Data collection and usage.
* **Human Oversight**: Levels of human control and intervention.
**3. Guidelines for Decision-Making in Critical Scenarios**
* For EACH scenario provided in `{key_decision_making_scenarios_csv}`:
* **Scenario Analysis**: Briefly describe the ethical dilemma posed.
* **Primary Ethical Principle(s) at Stake**: Identify which of the above principles are most relevant.
* **Recommended Approach/Hierarchy**: Suggest a decision-making logic or prioritization. Clearly state any trade-offs.
* **Justification**: Explain the reasoning behind the recommended approach based on ethical principles.
**4. Design and Development Recommendations**
* Specific design considerations for `{autonomous_system_type}` to embed ethical behavior (e.g.
fail-safe mechanisms
auditable logs
bias testing).
**5. Operational and Deployment Considerations**
* Monitoring ethical performance post-deployment.
* Procedures for addressing ethical breaches or unforeseen negative consequences.
**IMPORTANT**: The framework should be actionable and provide clear guidance for engineers. The discussion of scenarios from `{key_decision_making_scenarios_csv}` is CRUCIAL.
- Best for: Proactively developing ethical guidelines for autonomous mechanical systems helping engineers navigate complex moral decision-making in design and operation.
- Considerazioni etiche e analisi dell'impatto
- Ingegneria meccanica
Prompt AI per Lifecycle Environmental Impact Assessment Outline
- Economia circolare, Produzione eco-compatibile, Impatto ambientale, Valutazione dell'impatto ambientale, Ciclo di vita, Valutazione del ciclo di vita (LCA), Pratiche di sostenibilità, Sviluppo sostenibile, Progettazione sostenibile dei prodotti
Outlines key stages and considerations for conducting a lifecycle environmental impact assessment (LCA) for a new mechanical product. This prompt helps engineers structure their LCA efforts by identifying data needs impact categories and mitigation opportunities. The result is a markdown document detailing the LCA plan.
Uscita:
- Markdown
- richiede una connessione Internet in tempo reale
- Fields: {product_name_and_function} {bill_of_materials_csv} {manufacturing_processes_overview_text} {expected_use_phase_and_disposal_text}
Act as an Environmental Engineering Consultant specializing in Lifecycle Assessments (LCA) for mechanical products.
Your TASK is to generate a structured OUTLINE for conducting a Lifecycle Environmental Impact Assessment for `{product_name_and_function}`.
Consider the product's composition from `{bill_of_materials_csv}` (CSV string: 'Material
Quantity
Source_Region_if_known')
its `{manufacturing_processes_overview_text}`
and its `{expected_use_phase_and_disposal_text}`.
You MAY use live internet to identify common impact assessment tools
databases (e.g.
Ecoinvent
GaBi)
and relevant ISO standards (e.g.
ISO 14040/14044).
**LCA OUTLINE STRUCTURE (MUST be Markdown format):**
**1. Goal and Scope Definition**
* **1.1. Purpose of the LCA**: (e.g.
Identify environmental hotspots
Compare with alternative designs
Eco-labeling).
* **1.2. Product System Description**: Define `{product_name_and_function}`.
* **1.3. Functional Unit**: Quantified performance of the product system (e.g.
'Provide X amount of torque for Y hours'
'Manufacture Z parts').
* **1.4. System Boundaries**: Detail what stages are INCLUDED and EXCLUDED (Cradle-to-Grave
Cradle-to-Gate
Gate-to-Gate). Justify exclusions.
* Raw Material Acquisition (based on `{bill_of_materials_csv}`).
* Manufacturing & Assembly (based on `{manufacturing_processes_overview_text}`).
* Distribution/Transportation.
* Use Phase (based on `{expected_use_phase_and_disposal_text}`).
* End-of-Life (Disposal/Recycling
based on `{expected_use_phase_and_disposal_text}`).
* **1.5. Allocation Procedures** (if dealing with multi-output processes or recycled content).
* **1.6. Impact Categories Selection**: (e.g.
Global Warming Potential (GWP
kg CO2 eq)
Acidification Potential
Eutrophication Potential
Ozone Depletion Potential
Smog Formation
Resource Depletion
Water Footprint). Select relevant categories for this product type.
* **1.7. LCA Methodology & Software/Databases**: (e.g.
CML
ReCiPe
TRACI. Mention common software like SimaPro
GaBi
openLCA
and databases like Ecoinvent).
**2. Life Cycle Inventory Analysis (LCI)**
* **2.1. Data Collection Plan**: For each life cycle stage:
* Identify required input data (energy
materials
water
transport) and output data (emissions
waste).
* Data sources (primary vs. secondary
from `{bill_of_materials_csv}`
literature
databases).
* **2.2. Data Quality Requirements** (e.g.
precision
completeness
representativeness).
**3. Life Cycle Impact Assessment (LCIA)**
* **3.1. Classification**: Assigning LCI results to selected impact categories.
* **3.2. Characterization**: Calculating category indicator results (e.g.
converting greenhouse gas emissions into CO2 equivalents).
* **3.3. Normalization (Optional)**: Expressing impact indicator results relative to a reference value.
* **3.4. Weighting (Optional
and to be used with caution)**: Assigning weights to different impact categories.
**4. Life Cycle Interpretation**
* **4.1. Identification of Significant Issues**: Hotspot analysis.
* **4.2. Evaluation**: Completeness
sensitivity
and consistency checks.
* **4.3. Conclusions
Limitations
and Recommendations for Mitigation** (e.g.
material substitution
process optimization
design for disassembly).
**IMPORTANT**: This outline should guide an engineer in planning a comprehensive LCA. Emphasize the iterative nature of LCA and the importance of data quality.
- Best for: Structuring the lifecycle environmental impact assessment of mechanical products enabling engineers to systematically evaluate and mitigate environmental footprints.
- Considerazioni etiche e analisi dell'impatto
- Ingegneria meccanica
Prompt AI per Societal Impact Analysis of Automation
- Gestione del cambiamento, Automazione industriale, Industria meccanica, Pratiche di sostenibilità
Analyzes the potential societal impacts such as employment shifts skill demand changes and accessibility issues arising from implementing a specific automation technology in a mechanical engineering sector. This prompt helps engineers consider broader societal consequences. The output is a text-based report.
Uscita:
- Testo
- richiede una connessione Internet in tempo reale
- Fields: {automation_technology_description} {industry_sector_of_application} {geographical_region_context}
Act as a Socio-Technical Analyst specializing in the impacts of automation in engineering fields.
Your TASK is to provide an analysis of the potential societal impacts of implementing `{automation_technology_description}` within the `{industry_sector_of_application}` specifically considering the `{geographical_region_context}`.
You SHOULD use live internet access to gather data on employment trends
skill demands
and relevant socio-economic studies for the specified region and sector.
**SOCIETAL IMPACT ANALYSIS REPORT (Plain Text Format):**
**1. Introduction**
* Overview of the `{automation_technology_description}` and its intended application in the `{industry_sector_of_application}`.
* Brief note on the socio-economic context of `{geographical_region_context}` relevant to automation.
**2. Potential Impacts on Employment**
* **Job Displacement**: Analyze potential for job losses in roles directly affected by the automation. Provide any available statistics or projections for the `{industry_sector_of_application}` in `{geographical_region_context}`.
* **Job Creation**: Analyze potential for new jobs created (e.g.
maintenance of automated systems
programming
data analysis
new roles enabled by the technology).
* **Job Transformation**: How existing roles might change
requiring new skills or responsibilities.
**3. Shifts in Skill Demand**
* **Upskilling/Reskilling Needs**: Identify skills that will become more critical (e.g.
digital literacy
robotics programming
data interpretation
complex problem-solving) and skills that may become obsolete.
* **Impact on Training and Education**: Discuss potential needs for changes in vocational training and engineering curricula in `{geographical_region_context}`.
**4. Economic Impacts**
* **Productivity Gains**: Potential for increased efficiency
output
and competitiveness in the `{industry_sector_of_application}`.
* **Investment Requirements**: Capital costs associated with implementing `{automation_technology_description}`.
* **Distribution of Economic Benefits**: Discuss who is likely to benefit most (e.g.
capital owners
highly skilled labor
consumers). Consider potential for increased inequality.
**5. Accessibility and Equity**
* **Impact on Small vs. Large Businesses**: Can businesses of all sizes in `{geographical_region_context}` adopt this technology
or does it favor larger enterprises?
* **Impact on Different Demographics**: Are there specific groups (e.g.
older workers
specific genders
minority groups) that might be disproportionately affected
positively or negatively?
* **Digital Divide**: Does the technology exacerbate or mitigate the digital divide within the region?
**6. Broader Societal and Ethical Considerations**
* **Worker Well-being**: Impact on job quality
stress levels
and workplace safety.
* **Social Acceptance and Resistance**: Potential for resistance to adoption from workers or the public.
* **Long-term Regional Development**: How might widespread adoption of this technology influence the economic trajectory of `{geographical_region_context}`?
**7. Policy Recommendations / Mitigation Strategies (Brief Suggestions)**
* Proactive measures that could be taken by policymakers
industry
or educational institutions in `{geographical_region_context}` to maximize benefits and mitigate negative impacts (e.g.
retraining programs
social safety nets
investment in education).
**8. Conclusion**
* Summary of key potential societal impacts and a call for responsible implementation.
**Disclaimer**: This analysis is based on publicly available information and general trends. Specific impacts can vary based on the details of implementation.
- Best for: Analyzing potential societal consequences of automation in mechanical engineering such as employment shifts and skill demand helping to inform responsible technology adoption.
Stiamo dando per scontato che l'IA possa sempre generare i migliori prompt in ingegneria meccanica? Come vengono generati?
L'intelligenza artificiale renderà superflui gli ingegneri umani?
Post correlati
Ultime pubblicazioni e brevetti su Aerogel e Aerographene
Ultime pubblicazioni e brevetti sugli ossidi ad alta entropia (HEO)
Ultime pubblicazioni e brevetti sugli MXeni
Ultime pubblicazioni e brevetti sui Quantum Dots
Ultime pubblicazioni e brevetti sulle perovskiti
Ultime pubblicazioni e brevetti sul grafene