Maison » Reynolds-Averaged Navier-Stokes (RANS) Equations

Reynolds-Averaged Navier-Stokes (RANS) Equations

1895
  • Osborne Reynolds

The Reynolds-Averaged Navier-Stokes (RANS) equations are time-averaged equations of motion for turbulent fluid flow. This approach, called Reynolds decomposition, separates flow variables into a mean and a fluctuating component. The averaging process introduces an additional term, the Reynolds stress tensor, which represents the effect of turbulence and must be modeled to achieve closure, making simulations computationally tractable.

The core idea behind RANS is Reynolds decomposition, where an instantaneous quantity is split into its time-averaged and fluctuating parts. For velocity, this is [latex]u_i(x,t) = \bar{u}_i(x) + u’_i(x,t)[/latex]. When this is substituted into the Navier-Stokes equations and the equations are time-averaged, the non-linear convective term generates a new term, [latex] -\rho \overline{u’_i u’_j} [/latex], known as the Reynolds stress tensor. This tensor represents the net transfer of momentum due to turbulent fluctuations.

The appearance of this unknown tensor leads to the ‘closure problem’ of turbulence: there are more unknowns than equations. To solve the system, the Reynolds stresses must be related to the mean flow quantities through a turbulence model. The most common approach is the Boussinesq hypothesis, which assumes the Reynolds stresses are proportional to the mean strain rate, introducing an ‘eddy viscosity’ or ‘turbulent viscosity’. This is analogous to how molecular viscosity relates stress to strain rate in laminar flow. Turbulence models, such as the popular k-ε (k-epsilon) and k-ω (k-omega) models, are sets of additional transport equations used to compute this eddy viscosity throughout the flow field. For example, the k-ε model solves for the turbulent kinetic energy (k) and its rate of dissipation (ε). RANS provides a good balance of accuracy and computational cost for many engineering applications, as it avoids the prohibitive expense of resolving all turbulent eddies directly.

UNESCO Nomenclature: 2205
– Fluid Mechanics

Type

Abstract System

Disruption

Foundational

Utilisation

Widespread Use

Precursors

  • Navier-Stokes Equations
  • Osborne Reynolds’ experiments on flow transition from laminar to turbulent
  • Statistical mécanique and time-averaging concepts
  • Joseph Boussinesq’s eddy viscosity hypothesis

Applications

  • design of commercial aircraft wings and fuselages
  • analysis of turbomachinery like jets and turbines
  • hydrodynamic design of ship hulls
  • modeling flow in internal combustion engines
  • civil engineering applications like wind loading on buildings
  • sports science for analyzing aerodynamics of athletes and equipment

Brevets :

QUE

Potential Innovations Ideas

!niveaux !!! Adhésion obligatoire

Vous devez être membre de l'association pour accéder à ce contenu.

S’inscrire maintenant

Vous êtes déjà membre ? Connectez-vous ici
Related to: rans, turbulence modeling, reynolds stress, closure problem, k-epsilon, k-omega, cfd, eddy viscosity

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

DISPONIBLE POUR DE NOUVEAUX DÉFIS
Ingénieur mécanique, chef de projet ou de R&D
Développement de produits efficace

Disponible pour un nouveau défi dans un court délai.
Contactez-moi sur LinkedIn
Intégration électronique métal-plastique, Conception à coût réduit, BPF, Ergonomie, Appareils et consommables de volume moyen à élevé, Secteurs réglementés, CE et FDA, CAO, Solidworks, Lean Sigma Black Belt, ISO 13485 médical

Nous recherchons un nouveau sponsor

 

Votre entreprise ou institution est dans le domaine de la technique, de la science ou de la recherche ?
> envoyez-nous un message <

Recevez tous les nouveaux articles
Gratuit, pas de spam, email non distribué ni revendu

ou vous pouvez obtenir votre adhésion complète - gratuitement - pour accéder à tout le contenu restreint >ici<

Related Invention, Innovation & Technical Principles

Retour en haut

Vous aimerez peut-être aussi