The repeatability limit, [latex]r[/latex], is a critical value derived from the repeatability standard deviation ([latex]s_r[/latex]). It represents the maximum expected absolute difference between two single test results, obtained under repeatability conditions, with a 95% probability. It is commonly calculated as [latex]r = 2.8 \times s_r[/latex]. If the difference exceeds [latex]r[/latex], the results are considered suspect.
Repeatability Limit (stats)
- Organisation internationale de normalisation (ISO)
The repeatability limit provides a practical tool for judging the acceptability of two test results. Its statistical foundation lies in the properties of the normal distribution. The difference between two measurements drawn from the same normal distribution with standard deviation [latex]s_r[/latex] is also normally distributed with a mean of zero and a standard deviation of [latex]\sqrt{s_r^2 + s_r^2} = \sqrt{2}s_r[/latex]. To encompass 95% of these differences, we use a coverage factor. For a normal distribution, this factor is approximately 1.96. Therefore, the 95% limit is [latex]1.96 \times \sqrt{2} \times s_r \approx 2.77s_r[/latex], which is often rounded to [latex]2.8s_r[/latex] for simplicity in normes like ISO 5725.
A more precise calculation uses the Student’s t-distribution, especially when [latex]s_r[/latex] is estimated from a small number of measurements. The formula becomes [latex]r = t_{(1-\alpha/2, \nu)} \times \sqrt{2} \times s_r[/latex], where [latex]t_{(1-\alpha/2, \nu)}[/latex] is the critical value from the t-distribution for a confidence level of [latex]1-\alpha[/latex] (e.g., 95%) and [latex]\nu[/latex] degrees of freedom used to estimate [latex]s_r[/latex]. In practice, if a lab runs two tests on the same sample and the difference is greater than [latex]r[/latex], it’s a signal to investigate potential issues like procedural errors, sample contamination, or instrument malfunction.
Type
Disruption
Utilisation
Precursors
- Jerzy Neyman and Egon Pearson’s development of confidence intervals in the 1930s
- The Student’s t-distribution published by William Sealy Gosset (‘Student’) in 1908
- The ISO 5725 standard on accuracy (trueness and precision) of measurement methods and results
Applications
- checking the consistency of duplicate measurements in a laboratory
- defining performance specifications for analytical instruments
- quality control charts for monitoring process stability
- regulatory compliance in pharmaceutical and environmental testing
- resolving disputes between two measurements of the same sample
Brevets :
Potential Innovations Ideas
!niveaux !!! Adhésion obligatoire
Vous devez être membre de l'association pour accéder à ce contenu.
DISPONIBLE POUR DE NOUVEAUX DÉFIS
Ingénieur mécanique, chef de projet ou de R&D
Disponible pour un nouveau défi dans un court délai.
Contactez-moi sur LinkedIn
Intégration électronique métal-plastique, Conception à coût réduit, BPF, Ergonomie, Appareils et consommables de volume moyen à élevé, Secteurs réglementés, CE et FDA, CAO, Solidworks, Lean Sigma Black Belt, ISO 13485 médical
Nous recherchons un nouveau sponsor
Votre entreprise ou institution est dans le domaine de la technique, de la science ou de la recherche ?
> envoyez-nous un message <
Recevez tous les nouveaux articles
Gratuit, pas de spam, email non distribué ni revendu
ou vous pouvez obtenir votre adhésion complète - gratuitement - pour accéder à tout le contenu restreint >ici<
Historical Context
Repeatability Limit (stats)
(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)
Related Invention, Innovation & Technical Principles