The Prime Number Theorem describes the asymptotic distribution of prime numbers among the integers. It states that the prime-counting function [latex]\pi(x)[/latex], which gives the number of primes less than or equal to [latex]x[/latex], is asymptotically equivalent to [latex]x / \ln(x)[/latex]. Formally, [latex]\lim_{x \to \infty} \frac{\pi(x)}{x/\ln(x)} = 1[/latex]. This provides a fundamental link between primes and the natural logarithm.
The Prime Number Theorem
- Jacques Hadamard
- Charles-Jean de la Vallée Poussin
The Prime Number Theorem (PNT) is a cornerstone of number theory that provides an approximate description of how prime numbers are distributed. The prime-counting function, [latex]\pi(x)[/latex], is a step function that jumps by 1 at each prime number. While the exact location of primes appears random, the PNT reveals a regular asymptotic behavior. The theorem doesn’t say that the difference between [latex]\pi(x)[/latex] and [latex]x/\ln(x)[/latex] is small, but rather that their ratio approaches 1 as [latex]x[/latex] becomes arbitrarily large. This means that for a large number [latex]x[/latex], the probability that a randomly chosen integer near [latex]x[/latex] is prime is about [latex]1/\ln(x)[/latex].
The idea was first conjectured in the late 18th century by Adrien-Marie Legendre (1798) and Carl Friedrich Gauss (1792), based on empirical evidence from tables of primes. They both proposed that [latex]\pi(x)[/latex] is approximately [latex]x/(\ln(x) – C)[/latex] for some constant C. However, proving this relationship required significant advances in mathematics, particularly in complex analysis. The first rigorous proofs were independently achieved by Jacques Hadamard and Charles-Jean de la Vallée Poussin in 1896. Their proofs were non-elementary, relying crucially on the properties of the Riemann zeta function in the complex plane, specifically showing it has no zeros on the line where the real part is 1.
Taper
Perturbation
Usage
Précurseurs
- Euclid’s proof of the infinitude of primes (c. 300 BC)
- Euler’s product formula connecting primes and the zeta function (1737)
- Tables of prime numbers compiled by mathematicians
- Legendre’s conjecture on prime density (1798)
- Gauss’s conjecture on the logarithmic integral (1792)
- Chebyshev’s work providing bounds for [latex]\pi(x)[/latex] (1852)
- Riemann’s 1859 paper on the zeta function
Applications
- analytic number theory
- cryptographie (e.g., estimating the density of suitable primes for RSA)
- theoretical computer science for analyzing algorithms involving primes
- research into the Riemann hypothesis
- development of sieve methods
Brevets:
Idées d'innovations potentielles
!niveaux !!! Adhésion obligatoire
Vous devez être membre de l'association pour accéder à ce contenu.
DISPONIBLE POUR DE NOUVEAUX DÉFIS
Ingénieur mécanique, chef de projet, ingénierie des procédés ou R&D
Disponible pour un nouveau défi dans un court délai.
Contactez-moi sur LinkedIn
Intégration électronique métal-plastique, Conception à coût réduit, BPF, Ergonomie, Appareils et consommables de volume moyen à élevé, Production allégée, Secteurs réglementés, CE et FDA, CAO, Solidworks, Lean Sigma Black Belt, ISO 13485 médical
Nous recherchons un nouveau sponsor
Votre entreprise ou institution est dans le domaine de la technique, de la science ou de la recherche ?
> envoyez-nous un message <
Recevez tous les nouveaux articles
Gratuit, pas de spam, email non distribué ni revendu
ou vous pouvez obtenir votre adhésion complète - gratuitement - pour accéder à tout le contenu restreint >ici<
Inventions, innovations et principes techniques connexes