This is the differential form of Faraday’s law of induction, one of Maxwell’s four equations. It states that a time-varying magnetic field ([latex]\mathbf{B}[/latex]) always accompanies a spatially varying, non-conservative electric field ([latex]\mathbf{E}[/latex]). The relationship is expressed as [latex]\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}[/latex]. This equation governs how changing magnetic fields create electric fields at a specific point in space.
Maxwell-Faraday Equation
- Michael Faraday
- James Clerk Maxwell
The Maxwell-Faraday equation is a fundamental law of electromagnetism that describes how a changing magnetic field generates an electric field. In its differential form, [latex]\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}[/latex], it provides a localized, microscopic description of this phenomenon. Here, [latex]\nabla \times[/latex] is the curl operator, which measures the rotational tendency of a vector field. [latex]\mathbf{E}[/latex] represents the electric field, and [latex]\mathbf{B}[/latex] is the magnetic field. The term [latex]\frac{\partial \mathbf{B}}{\partial t}[/latex] is the partial derivative of the magnetic field with respect to time, signifying its rate of change at a specific point in space.
A key implication of this equation is that the induced electric field is non-conservative. A conservative vector field has a curl of zero, meaning the line integral around any closed loop is zero. Since the curl of [latex]\mathbf{E}[/latex] is non-zero in the presence of a changing magnetic field, the work done by this electric field on a charge moving in a closed loop is not zero. This non-zero work per unit charge is precisely the electromotive force (EMF) that drives current in a conductor.
This equation was James Clerk Maxwell’s generalization of Michael Faraday’s experimental findings from 1831. Faraday observed that changing magnetic flux through a circuit induced a current, but he described it in terms of flux and EMF. Maxwell reformulated this observation into a local field equation, making it a cornerstone of his unified theory of electromagnetism. It elegantly connects electricity and magnetism, showing they are not separate phenomena but two facets of a single electromagnetic field. This formulation is crucial for deriving the wave equation for electromagnetic radiation, predicting the existence of light waves, radio waves, and other forms of electromagnetic energy propagating through space.
Type
Disruption
Utilisation
Precursors
- Hans Christian Ørsted’s discovery of the magnetic effect of electric current (1820)
- André-Marie Ampère’s formulation of the law governing forces between currents
- Michael Faraday’s experimental discovery of electromagnetic induction (1831)
- The development of vector calculus
Applications
- electric generators
- induction motors
- transformers
- wireless power transfer
- induction cooking
- magnetic recording heads
- particle accelerators
Brevets :
Potential Innovations Ideas
!niveaux !!! Adhésion obligatoire
Vous devez être membre de l'association pour accéder à ce contenu.
DISPONIBLE POUR DE NOUVEAUX DÉFIS
Ingénieur mécanique, chef de projet ou de R&D
Disponible pour un nouveau défi dans un court délai.
Contactez-moi sur LinkedIn
Intégration électronique métal-plastique, Conception à coût réduit, BPF, Ergonomie, Appareils et consommables de volume moyen à élevé, Secteurs réglementés, CE et FDA, CAO, Solidworks, Lean Sigma Black Belt, ISO 13485 médical
Nous recherchons un nouveau sponsor
Votre entreprise ou institution est dans le domaine de la technique, de la science ou de la recherche ?
> envoyez-nous un message <
Recevez tous les nouveaux articles
Gratuit, pas de spam, email non distribué ni revendu
ou vous pouvez obtenir votre adhésion complète - gratuitement - pour accéder à tout le contenu restreint >ici<
Historical Context
Maxwell-Faraday Equation
(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)
Related Invention, Innovation & Technical Principles