It is impossible to simultaneously know with perfect accuracy certain pairs of complementary physical properties of a particle. The most common example is the position [latex]x[/latex] and momentum [latex]p[/latex]. The principle states that the product of their uncertainties, [latex]\Delta x[/latex] and [latex]\Delta p[/latex], must be greater than or equal to a specific value: [latex]\Delta x \Delta p \ge \frac{\hbar}{2}[/latex].
Heisenberg Uncertainty Principle
- Werner Heisenberg
The Heisenberg Uncertainty Principle is a fundamental tenet of quantum mécanique, not a statement about the limitations of measurement technology. It reflects an inherent property of quantum systems. The principle arises from the wave-like nature of all quantum objects. A particle’s position and momentum are described by its wavefunction. A wavefunction that is highly localized in space (small [latex]\Delta x[/latex]) is necessarily composed of a wide superposition of many different momentum waves, resulting in a large uncertainty in momentum (large [latex]\Delta p[/latex]). Conversely, a wavefunction with a well-defined momentum (small [latex]\Delta p[/latex]) must be a spatially spread-out wave, leading to a large uncertainty in position (large [latex]\Delta x[/latex]).
The principle applies to any pair of ‘conjugate variables,’ which are related through Fourier transforms in the mathematical formalism of quantum mechanics. Another important pair is energy ([latex]E[/latex]) and time ([latex]t[/latex]), with the relation [latex]\Delta E \Delta t \ge \frac{\hbar}{2}[/latex]. This implies that the energy of a state that exists for only a short time cannot be precisely determined. This has profound consequences, such as allowing for the temporary creation of ‘virtual particles’ in quantum field theory, which mediate fundamental forces. The uncertainty principle fundamentally limits the determinism envisioned by classical physics, replacing it with a probabilistic description of nature at the smallest scales.
Type
Disruption
Utilisation
Precursors
- Matrix mechanics (1925)
- Wave mechanics (Schrödinger, 1926)
- Fourier analysis
- Born rule (probabilistic interpretation of wavefunction, 1926)
Applications
- understanding the stability of atoms
- explaining quantum tunneling
- estimating the size and energy of atomic ground states
- fundamental limits in quantum measurement and traitement des signaux
- quantum cryptographie
Brevets :
Potential Innovations Ideas
!niveaux !!! Adhésion obligatoire
Vous devez être membre de l'association pour accéder à ce contenu.
DISPONIBLE POUR DE NOUVEAUX DÉFIS
Ingénieur mécanique, chef de projet ou de R&D
Disponible pour un nouveau défi dans un court délai.
Contactez-moi sur LinkedIn
Intégration électronique métal-plastique, Conception à coût réduit, BPF, Ergonomie, Appareils et consommables de volume moyen à élevé, Secteurs réglementés, CE et FDA, CAO, Solidworks, Lean Sigma Black Belt, ISO 13485 médical
Nous recherchons un nouveau sponsor
Votre entreprise ou institution est dans le domaine de la technique, de la science ou de la recherche ?
> envoyez-nous un message <
Recevez tous les nouveaux articles
Gratuit, pas de spam, email non distribué ni revendu
ou vous pouvez obtenir votre adhésion complète - gratuitement - pour accéder à tout le contenu restreint >ici<
Historical Context
Heisenberg Uncertainty Principle
(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)
Related Invention, Innovation & Technical Principles