The Finite Element Method (FEM) is a powerful numerical technique for solving complex engineering and physics problems described by partial differential equations. It works by discretizing a continuous domain into a set of smaller, simpler subdomains called ‘finite elements’. This allows for the approximate numerical solution of problems in structural analysis, heat transfer, fluid flow, and electromagnetism.
Finite Element Method
- Richard Courant
- Alexander Hrennikoff
- Olgierd Zienkiewicz
The FEM process begins with the ‘discretization’ of the problem domain into a mesh of finite elements (e.g., triangles or quadrilaterals in 2D, tetrahedra or hexahedra in 3D). Within each element, the unknown field variable (e.g., displacement) is approximated by simple polynomial functions, known as shape functions. The values of the field at the element nodes become the new unknowns of the problem.
A system of algebraic equations for the entire domain is derived, typically using a variational principle like the principle of minimum potential energy or a weighted residual méthode like the Galerkin method. This process generates an ‘element stiffness matrix’ [latex][k_e][/latex] for each element, which relates the nodal forces [latex]\{f_e\}[/latex] to the nodal displacements [latex]\{u_e\}[/latex] via [latex][k_e] \{u_e\} = \{f_e\}[/latex]. These individual element matrices are then systematically combined (‘assembled’) into a single global stiffness matrix [latex][K][/latex] for the entire structure. After applying known boundary conditions (forces and constraints), the resulting large system of linear equations, [latex][K] \{U\} = \{F\}[/latex], is solved numerically for the unknown global displacement vector [latex]\{U\}[/latex]. Once the nodal displacements are known, other quantities like strains and stresses can be calculated for each element.
Type
Disruption
Utilisation
Precursors
- Calculus of variations
- Matrix algebra
- The advent of digital computers
- Theory of elasticity and continuum mécanique
- Rayleigh-Ritz method for approximating solutions
Applications
- structural analysis logiciel (e.g., ansys, abaqus, nastran)
- automotive crash simulations
- aerospace component design and stress analysis
- thermal analysis of electronic components
- biomechanical simulation of implants and tissues
Brevets :
Potential Innovations Ideas
!niveaux !!! Adhésion obligatoire
Vous devez être membre de l'association pour accéder à ce contenu.
DISPONIBLE POUR DE NOUVEAUX DÉFIS
Ingénieur mécanique, chef de projet ou de R&D
Disponible pour un nouveau défi dans un court délai.
Contactez-moi sur LinkedIn
Intégration électronique métal-plastique, Conception à coût réduit, BPF, Ergonomie, Appareils et consommables de volume moyen à élevé, Secteurs réglementés, CE et FDA, CAO, Solidworks, Lean Sigma Black Belt, ISO 13485 médical
Nous recherchons un nouveau sponsor
Votre entreprise ou institution est dans le domaine de la technique, de la science ou de la recherche ?
> envoyez-nous un message <
Recevez tous les nouveaux articles
Gratuit, pas de spam, email non distribué ni revendu
ou vous pouvez obtenir votre adhésion complète - gratuitement - pour accéder à tout le contenu restreint >ici<
Related Invention, Innovation & Technical Principles