Electromotive force (EMF) and electric potential difference (voltage) are distinct concepts, though both are measured in volts. EMF is the work per unit charge done by a non-conservative force (e.g., chemical reaction, changing magnetic field) to move charge within a source. Potential difference is the work per unit charge done by the conservative electrostatic field between two points.
EMF vs. Potential Difference
- James Clerk Maxwell
The core difference between EMF and potential difference lies in the nature of the underlying fields. The electrostatic field ([latex]\mathbf{E}_{c}[/latex]), created by static charges, is conservative. This means the work it does on a charge moving around any closed loop is zero: [latex]\oint \mathbf{E}_{c} \cdot d\mathbf{l} = 0[/latex]. The potential difference, or voltage, between two points is the line integral of this conservative field, [latex]V = -\int \mathbf{E}_{c} \cdot d\mathbf{l}[/latex]. In contrast, an EMF source generates a non-conservative field or “impressed field” ([latex]\mathbf{E}_{nc}[/latex]). This field does non-zero work on a charge around a closed loop: [latex]\mathcal{E} = \oint \mathbf{E}_{nc} \cdot d\mathbf{l} \neq 0[/latex].
In a simple DC circuit with a battery, the battery provides the EMF. Inside the battery, the non-conservative chemical forces move positive charges from the negative to the positive terminal, against the opposing conservative electrostatic field. This “uphill” journey is where the EMF does its work. Outside the battery, in the external circuit, the charges move “downhill” from the positive to the negative terminal, driven by the conservative electrostatic field. The potential drop across the external resistor is equal to the EMF minus the potential drop across the battery’s internal resistance. Thus, EMF is the cause of the sustained current, while potential difference is the measure of energy dissipated per unit charge in a part of the circuit.
Type
Disruption
Utilisation
Precursors
- Alessandro Volta’s work on electric potential
- Georg Ohm’s law relating voltage, current, and resistance
- Gustav Kirchhoff’s circuit laws
- James Clerk Maxwell’s field equations
Applications
- circuit analysis (kirchhoff’s voltage law)
- battery design and characterization
- understanding of generators and motors
- thermoelectric device analysis
Brevets :
Potential Innovations Ideas
!niveaux !!! Adhésion obligatoire
Vous devez être membre de l'association pour accéder à ce contenu.
DISPONIBLE POUR DE NOUVEAUX DÉFIS
Ingénieur mécanique, chef de projet ou de R&D
Disponible pour un nouveau défi dans un court délai.
Contactez-moi sur LinkedIn
Intégration électronique métal-plastique, Conception à coût réduit, BPF, Ergonomie, Appareils et consommables de volume moyen à élevé, Secteurs réglementés, CE et FDA, CAO, Solidworks, Lean Sigma Black Belt, ISO 13485 médical
Nous recherchons un nouveau sponsor
Votre entreprise ou institution est dans le domaine de la technique, de la science ou de la recherche ?
> envoyez-nous un message <
Recevez tous les nouveaux articles
Gratuit, pas de spam, email non distribué ni revendu
ou vous pouvez obtenir votre adhésion complète - gratuitement - pour accéder à tout le contenu restreint >ici<
Historical Context
EMF vs. Potential Difference
(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)
Related Invention, Innovation & Technical Principles